Skip to main content
Log in

A systematic study of macrodiols and poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) with different ether [CH2CH2O]m groups. Synthesis and characterization

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

α,ω-Hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) was synthesized by ring-opening polymerization (ROP) of ε-caprolactone (ε-CL).The ROP was catalyzed by ammonium decamolybdate in the presence of ether diols [HO-(CH2-CH2-O)m-H] (where m = 2, 3, 4, 5, 6, and 8) as initiators. The homopolymer HOPCLOH was obtained with the ether group (EG) [HO-PCL-(CH2-CH2-O)m-PCL-OH (HOPCLOH)] as part of the backbone of the polyester with a systematic increase in the segment of the EG. The number average molecular weight (Mn) for all samples were similar in the range of oligomers (Mn = 1240–1510 Da) to have a significant effect of the EG. The effect of the EG on the physical properties was evaluated by differential scanning calorimetry (DSC) where the crystallinity of HOPCLOH and the size of the EG showed a relationship inversely proportional. Poly(ester-urethanes) (PEUs) derived from HOPCLOH exhibited an elastomeric behavior, where long chains of EG induced poor mechanical properties. The use and selection of the ether diols as initiators in the ROP of CL to synthesize HOPCLOH was not trivial because these EG substituents affected the crystallinity, and the mechanical properties of their PEUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alger M (2017) Polymer science dictionary3rd edn. Dordrecht, Springer

    Book  Google Scholar 

  2. Jakisch L, Garaleh M, Schäfer M, Mordvinkin A, Saalwächter K, Böhme F (2018). Macromol Chem Phys 219:1700327

    Article  Google Scholar 

  3. Báez JE, Marcos-Fernández A, Galindo-Iranzo P (2011). Polym-Plast Technol Eng 50:839–850

    Article  Google Scholar 

  4. Jeong K-H, Park D, Lee Y-C (2017). J Polym Res 24:112

    Article  Google Scholar 

  5. Erdagi SI, Doganci E, Uyanik C, Yilmaz F (2016). React Funct Polym 99:49–58

    Article  Google Scholar 

  6. Uyar Z, Öncel A (2018). J Polym Res 25:245

    Article  Google Scholar 

  7. Lu Y, Cao J, Huang J, Xiong Z, Chen H, Xiong C, Chen D (2017). J Polym Res 24:200

    Article  Google Scholar 

  8. Mandal M, Monkowius U, Chakraborty D (2016). J Polym Res 23:220

    Article  Google Scholar 

  9. Báez JE, Marcos-Fernández A, Lebrón-Aguilar R, Martínez-Richa A (2006). Polymer 47:8420–8429

    Article  Google Scholar 

  10. Sung S-J, Yun YH, Lee S, Park J-K, Kim D-H, Cho KY (2010). React Funct Polym 70:622–629

    Article  CAS  Google Scholar 

  11. Guillaume SM (2013). Eur Polym J 49:768–779

    Article  CAS  Google Scholar 

  12. Báez JE, Marcos-Fernández A, Martínez-Richa A, Galindo-Iranzo P (2017). Polym-Plast Technol Eng 56:889–898

    Article  Google Scholar 

  13. Báez JE, Marcos-Fernández A, Galindo-Iranzo P (2011). J Polym Res 18:1137

    Article  Google Scholar 

  14. Báez JE, Marcos-Fernández A, Navarro R, García C (2017). J Polym Res 24:199

    Article  Google Scholar 

  15. Báez JE, Marcos-Fernández A (2011). Int J Polym Anal Charact 16:269–276

    Article  Google Scholar 

  16. Takizawa K, Tang C, Hawker CJ (2008). J Am Chem Soc 130:1718–1726

    Article  CAS  Google Scholar 

  17. Báez JE, Zhao R, Shea KJ (2017). Ind Eng Chem Res 56:10366–10383

    Article  Google Scholar 

  18. Huang M-H, Li S, Coudane J, Vert M (2003). Macromol Chem Phys 204:1994–2001

    Article  CAS  Google Scholar 

  19. Huang M-H, Li S, Vert M (2004). Polymer 45:8675–8681

    Article  CAS  Google Scholar 

  20. Naguib HF, Abdel Aziz MS, Sherif SM, Saad GR (2011). J Polym Res 18:1217–1227

    Article  CAS  Google Scholar 

  21. Báez JE, Marcos-Fernández A (2012). React Funct Polym 72:349–357

    Article  Google Scholar 

  22. Báez JE, Ramírez D, Valentín JL, Marcos-Fernández A (2012). Macromolecules 45:6966–6980

    Article  Google Scholar 

  23. Ping P, Wang W, Chen X, Jing X (2005). Biomacromolecules 6:587–592

    Article  Google Scholar 

  24. Panwiriyarat W, Tanrattanakul V, Pilard J-F, Pasetto P, Khaokong C (2013). J Appl Polym Sci 130:453–462

    Article  CAS  Google Scholar 

  25. Ma Z, Hong Y, Nelson DM, Pichamuthu JE, Leeson CE, Wagner WR (2011). Biomacromolecules 12:3265–3274

    Article  CAS  Google Scholar 

  26. Lin C-Y, Hsu S-H (2015). J Biomed Mater Res B Appl Biomater 103B:878–887

    Article  CAS  Google Scholar 

  27. Tatai L, Moore TG, Adhikari R, Malherbe F, Jayasekara R, Griffiths I, Gunatillake PA (2007). Biomaterials 28:5407–5417

    Article  CAS  Google Scholar 

  28. Rattanapan S, Pasetto P, Pilard J-F, Tanrattanakul V (2016). J Polym Res 23:182

    Article  Google Scholar 

  29. Wu C-L, Tsou C-Y, Tseng Y-C, Lee H-T, Suen M-C, Gu J-H, Tsuo C-H, Chiu S-H (2016). J Polym Res 23:263

    Article  CAS  Google Scholar 

  30. Yuan J, Sang Z, Zhao J, Zhang Z, Zhang J, Cheng J (2017). J Polym Res 24:88

    Article  Google Scholar 

  31. Li SQ, Zhao JB, Zhang ZY, Zhang JY, Yang WT (2015). Polymer 57:164–172

    Article  CAS  Google Scholar 

  32. Li SQ, Sang ZH, Zhao JB, Zhang ZY, Cheng J, Zhang JY (2016). Eur Polym J 84:784–798

    Article  CAS  Google Scholar 

  33. Báez JE, Martínez-Rosales M, Martínez-Richa A (2003). Polymer 44:6767–6772

    Article  Google Scholar 

  34. Dey P, Hemmati-Sadeghi S, Haag R (2016). Polym Chem 7:375–383

    Article  CAS  Google Scholar 

  35. Chausson M, Fluchère A-S, Landreau E, Aguni Y, Chevalier Y, Hamaide T, Adbul-Malak N, Bonnet I (2008). Int J Pharm 362:153–162

    Article  CAS  Google Scholar 

  36. Báez JE, Ramírez-Hernández A, Marcos-Fernández A (2011). Int J Polym Anal Charact 16:377–389

    Article  Google Scholar 

  37. Sigma-Aldrich is now Merck. Thermal transitions of homopolymers: glass transition & melting point. https://www.sigmaaldrich.com/technical-documents/articles/materials-science/polymer-science/thermal-transitions-of-homopolymers.html. Accessed 03 Dec 2018

  38. Piao L, Dai Z, Deng M, Chen X, Jing X (2003). Polymer 44:2025–2031

    Article  CAS  Google Scholar 

  39. Zamani S, Khoee S (2012). Polymer 53:5723–5736

    Article  CAS  Google Scholar 

  40. Báez JE, Marcos-Fernández A, Navarro, R. Chem Pap accepted manuscript

Download references

Acknowledgments

José E. Báez thanks the “Consejo Nacional de Ciencia y Tecnología” (CONACYT) (Proyecto CONACYT Ciencia Básica 284893), Dirección de Apoyo a la Investigación y al Posgrado (DAIP) at University of Guanajuato (UG), and “Sistema Nacional de Investigadores (SNI)” in México for financial support of the work. José E. Báez also thanks to Ángel Marcos-Fernández for believing in these ideas and providing financial support for the reagents through the project MAT2017-87204-R from the Ministry of Economy and Competitiveness (MINECO) of Spain. José E. Báez also thanks to the UG for the recent opportunity to work as an Assistant Professor. Marvin was used for drawing, displaying, and characterizing chemical structures, substructures, and reactions (Marvin Sketch 6.1.3, 2013, ChemAxon; http://www.chemaxon.com); a free software program with an academic license was provided by ChemAxon. Finally, José E. Báez thanks to Gema Reina Mendieta for the acquisition of the NMR spectra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José E. Báez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Báez, J.E., Marcos-Fernández, Á., Navarro, R. et al. A systematic study of macrodiols and poly(ester-urethanes) derived from α,ω-hydroxy telechelic poly(ε-caprolactone) (HOPCLOH) with different ether [CH2CH2O]m groups. Synthesis and characterization. J Polym Res 26, 32 (2019). https://doi.org/10.1007/s10965-018-1682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1682-4

Keywords

Navigation