Skip to main content
Log in

Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release

  • ORIGINAL PAPER
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

We prepared a hydroxypropyl methyl cellulose-sodium alginate (HPMC-SA) composite hydrogel with a membrane covering the semi-interpenetrating network based on a semi-synthetic polymer hydroxypropyl methyl cellulose (HPMC) and a natural polymer sodium alginate (SA) by Ca2+ crosslinking and polyelectrolyte complexation with chitosan (CS) covering the hydrogel surface. The physiochemical properties of HPMC-SA hydrogels were evaluated by scanning electron microscopy, infrared spectrum, X-ray diffraction, and thermogravimetric analysis. The swelling ratio of the HPMC-SA composite hydrogel in simulated gastrointestinal fluid was measured. The drug release behavior of the HPMC-SA composite hydrogel for macro-molecular and small-molecule drugs was evaluated by using bovine serum albumin, metformin hydrochloride, and indomethacin as model drugs. The results showed that the HPMC-SA hydrogel had good water absorption and degradability, an increased swelling ratio of 55, and a prolonged time for maximum swelling degree of 50 h. Moreover, the hydrogel exhibited higher drug-loading capacity and improvements in the sustained release of bio-macromolecules, demonstrating its potential as a drug carrier for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hoffman A (2012) Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23

    Article  Google Scholar 

  2. Yang N, Wang Y, Zhang QS, Chen L, Zhao YP (2017) γ-Polyglutamic acid mediated crosslinking PNIPAAm-based thermo/pH-responsive hydrogels for controlled drug release. Polym. Degrad. Stab. 144:53–61

    Article  CAS  Google Scholar 

  3. Rao KM, Kumar A, Han SS (2017) Polysaccharide based bionanocomposite hydrogels reinforced with cellulose nanocrystals: drug release and biocompatibility analyses. Int. J. Biol. Macromol. 101:165–171

    Article  CAS  Google Scholar 

  4. Kumar A, Rao KM, Han SS (2017) Synthesis of mechanically stiff and bioactive hybrid hydrogels for bone tissue engineering applications. Chem. Eng. J. 317:119–131

    Article  CAS  Google Scholar 

  5. Hu Y, Mei Z, Hu X (2015) pH-sensitive interpenetrating network hydrogels based on pachyman and its carboxymethylated derivatives for oral drug delivery. J. Polym. Res. 22:98–107

    Article  CAS  Google Scholar 

  6. Hua SB, Ma HZ, Li X, Yang HX, Wang AQ (2010) pH-sensitive sodium alginate/poly(vinyl alcohol) hydrogel beads prepared by combined Ca2+ crosslinking and freeze-thawing cycles for controlled release of diclofenac sodium. Int. J. Biol. Macromol. 46:517–523

    Article  CAS  PubMed  Google Scholar 

  7. Klak M, Lefebvre E, Remy L, Agniel R, Picard J, Giraudier S, Larreta-Garde V (2013) Gelatin-alginate gels and their enzymatic modifications: controlling the delivery of small molecules. Macromol. Biosci. 13:687–695

    Article  CAS  PubMed  Google Scholar 

  8. Hu Y, Peng J, Ke L, Zhao D, Zhao H, Xiao X (2016) Alginate/carboxymethyl chitosan composite gel beads for oraldrug delivery. J. Polym. Res. 23:129–138

    Article  CAS  Google Scholar 

  9. Ghorpadea VS, Yadavb AV, Dias RJ (2016) Citric acid crosslinked cyclodextrin/hydroxypropylmethyl cellulose hydrogel films for hydrophobic drug delivery. Int. J. Biol. Macromol. 93:75–86

    Article  CAS  Google Scholar 

  10. Marani PL, Bloisi GD, Petri DFS (2015) Hydroxypropylmethyl cellulose films crosslinked with citric acid for control release of nicotine. Cellulose 22:3907–3918

    Article  CAS  Google Scholar 

  11. George M, Abraham TE (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan- a review. J. Control. Release 114:1–14

    Article  CAS  PubMed  Google Scholar 

  12. Chen SH, Tsao CT, Chang CH, Lai YT, Wu MF, Liu ZW, Chuang CN, Chou HC, Wang CK, Hsieh KH (2013) Synthesis and characterization of reinforced poly(ethylene glycol)/chitosan hydrogel as wound dressing materials. Macromol. Mater. Eng. 298:429–438

    Article  CAS  Google Scholar 

  13. Rogina A, Ressler A, Matić I, Ferrer GG, Marijanović I, Ivanković M, Ivanković H (2017) Cellular hydrogels based on pH-responsive chitosan-hydroxyapatite system. Carbohydr. Polym. 166:173–182

    Article  CAS  PubMed  Google Scholar 

  14. Constantin M, Bucatariu SM, Doroftei F, Fundueanu G (2017) Smart composite materials based on chitosan microspheres embedded in thermosensitive hydrogel for controlled delivery of drugs. Carbohydr. Polym. 157:493–502

    Article  CAS  PubMed  Google Scholar 

  15. Swamy BY, Prasad CV, Reddy CLN, Sudhakara P, Chung I, Subha MCS, Chowdoji RK (2012) Preparation of sodium alginate/poly(vinyl alcohol) blend microspheres for controlled release applications. J. Appl. Polym. Sci. 125:555–561

    Article  CAS  Google Scholar 

  16. Sarkar D, Nandi G, Changder A, Hudati P, Sarkar S, Ghosh LK (2017) Sustained release gastroretentive tablet of metformin hydrochloride based on poly(acrylicacid)-grafted-gellan. Int. J. Biol. Macromol. 96:137–148

    Article  CAS  PubMed  Google Scholar 

  17. Díaz-Rodríguez P, Landin M (2015) Controlled release of indomethacin from alginate–poloxamer–silicon carbide composites decrease in-vitro inflammation. Int. J. Biol. Macromol. 480:92–100

    Google Scholar 

  18. Brahima S, Boztepe C, Kunkul A, Yuceer M (2017) Modeling of drug release behavior of pH and temperature sensitive poly(NIPAAm-co-AAc) IPN hydrogels using response surface methodology and artificial neural networks. Mater. Sci. Eng. C 75:425–432

    Article  CAS  Google Scholar 

  19. Yang YJ, Tao X, Hou Q, Ma Y, Chen XL, Chen JF (2010) Mesoporous silica nanotubes coated with multilayered polyelectrolytes for pH-controlled drug release. Acta Biomater. 6:3092–3100

    Article  CAS  PubMed  Google Scholar 

  20. Higuchi T (1963) Mechanism of sustained-action medication: theoretical analysis of rate of release of solid drugs dispersed in soled matrices. J. Pharm. Sci. 52:1145–1148

    Article  CAS  PubMed  Google Scholar 

  21. Peppas N, Sahlin J (1989) A simple equation for the description of solute release III. Coupling of diffusion and relaxation. Int. J. Pharm. 57:169–172

    Article  CAS  Google Scholar 

  22. Serra L, Domenech J, Peppas N (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451

    Article  CAS  PubMed  Google Scholar 

  23. Su F, Wang J, Zhu S, Liu S, Yu X, Li S (2015) Synthesis and characterization of novel carboxymethyl chitosan grafted polylactide hydrogels for controlled drug delivery. Polym. Adv. Technol. 26:924–931

    Article  CAS  Google Scholar 

  24. Colinet I, Dulong V, Mocanu G, Picton L, Cerf DL (2017) Effect of chitosan coating on the swelling and controlled release of a poorly water-soluble drug from an amphiphilic and pH-sensitive hydrogel. Int. J. Biol. Macromol. 47:120–125

    Article  CAS  Google Scholar 

  25. Céline P-B, Antoine V, Denis B, Laurent V, Laurent D, Catherine F (2013) Development and characterization of composite chitosan/active carbon hydrogels for a medical application. J. Appl. Polym. Sci. 128:2945–2953

    Article  CAS  Google Scholar 

  26. Gao C, Ren J, Zhao C, Kong WQ, Dai QQ, Chen QF, Liu CF, Sun RC (2016) Xylan-based temperature/pH sensitive hydrogels for drug controlled release. Carbohydr. Polym. 151:189–197

    Article  CAS  PubMed  Google Scholar 

  27. Chi Y, Zhao L, Yuan Q, Li YJ, Zhang JN, Tu JC, Li N, Li XT (2012) Facile encapsulation of monodispersed silver nanoparticles in mesoporous compounds. Chem. Eng. J. 195-196:254–260

    Article  CAS  Google Scholar 

  28. Wang YM, Wang J, Yuan ZY, Han HY, Li T, Li L, Guo XH (2017) Chitosan cross-linked poly(acrylic acid) hydrogels: drug release control and mechanism. Colloid Surf B: Bio Interfaces 152:252–259

    Article  CAS  Google Scholar 

  29. Zhao XW, Zou X, Ye L (2017) Controlled pH- and glucose-responsive drug release behavior of cationic chitosan based nano-composite hydrogels by using graphene oxide as drug nanocarrier. J. Ind. Eng. Chem. 49:36–45

    Article  CAS  Google Scholar 

  30. Bhutani U, Laha A, Mitra K, Majumdar S (2016) Sodium alginate and gelatin hydrogels: viscosity effect on hydrophobic drug release. Mater. Lett. 164:76–79

    Article  CAS  Google Scholar 

  31. Wu J, Wu Z, Sun X, Yuan S, Zhang R, Lu Q, Yu Y (2017) Effect of sodium alginate on the properties of thermosensitive hydrogels. J. Chin. Chem. Soc. 64:231–238

    Article  CAS  Google Scholar 

  32. Dumitriu RP, Mitchell GR, Vasile C (2011) Multi-responsive hydrogels based on N-isopropylacrylamide and sodium alginate. Polym. Int. 60:222–233

    Article  CAS  Google Scholar 

  33. Moura MR, Aouada FA, Favaro SL, Radovanovic E, Rubira AF, Muniz EC (2009) Release of BSA from porous matrices constituted of alginate–Ca2+ and PNIPAAm-interpenetrated networks. Mater. Sci. Eng. C 29:2319–2325

    Article  CAS  Google Scholar 

  34. Yang J, Chen J, Pan D, Wan Y, Wang Z (2013) pH-sensitive interpenetrating network hydrogels based on chitosan derivatives and alginate for oral drug delivery. Carbohydr. Polym. 92:719–725

    Article  CAS  PubMed  Google Scholar 

  35. Ritger P, Peppas N (1987) A simple equation for description of solute release II. Fickian and anomaolous release from swellable devices. J. Control. Release 5:37–42

    Article  CAS  Google Scholar 

  36. Hu Y, Dong X, Ke L, Zhang S, Zhao D, Chen H, Xiao X (2017) Polysaccharides/mesoporous silica nanoparticles hybrid composite hydrogel beads for sustained drug delivery. J. Mater. Sci. 52:3095–3109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from the National Natural Science Foundation of China (No.81401510), Hubei Provincial Natural Science Foundation of China (2017CFB414), the academic team of South-central University for Nationalities (CZW15017), the Fundamental Research Funds for the Central Universities, South-Central University for Nationalities (CZP17092) and the National College Students Innovation and entrepreneurship training project (SCX1727).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhang, S., Han, D. et al. Construction and evaluation of the hydroxypropyl methyl cellulose-sodium alginate composite hydrogel system for sustained drug release. J Polym Res 25, 148 (2018). https://doi.org/10.1007/s10965-018-1546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-018-1546-y

Keywords

Navigation