Skip to main content
Log in

On Asymptotic Properties of Bell Polynomials and Concentration of Vertex Degree of Large Random Graphs

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We study concentration properties of vertex degrees of n-dimensional Erdős–Rényi random graphs with edge probability \(\rho /n\) by means of high moments of these random variables in the limit when n and \(\rho \) tend to infinity. These moments are asymptotically close to one-variable Bell polynomials \({{\mathcal {B}}}_k(\rho ), k\in {{\mathbb {N}}}\), that represent moments of the Poisson probability distribution \({{\mathcal {P}}}(\rho )\). We study asymptotic behavior of the Bell polynomials and modified Bell polynomials for large values of k and \(\rho \) with the help of the local limit theorem for auxiliary random variables. Using the results obtained, we get upper bounds for the deviation probabilities of the normalized maximal vertex degree of the Erdős–Rényi random graphs in the limit \(n,\rho \rightarrow \infty \) such that the ratio \(\rho /\log n \) remains finite or infinitely increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bass, H.: The Ihara–Selberg zeta function of a tree lattice. Int. J. Math. 3, 717–797 (1992)

    Article  MathSciNet  Google Scholar 

  2. Bell, E.T.: Exponential polynomials. Ann. Math. 35, 258–277 (1934)

    Article  MathSciNet  Google Scholar 

  3. Bell, E.T.: Exponential numbers. Am. Math. Mon. 41, 411–419 (1934)

    Article  MathSciNet  Google Scholar 

  4. Bender, E.A.: Central and local limit theorems applied to asymptotic enumeration. J. Combin. Theory Ser. A 15, 91–111 (1973)

    Article  MathSciNet  Google Scholar 

  5. Berndt, B.C.: Ramanujan reaches his hand from his grave to snatch your theorems from you. Asia Pac. Math. Newsl. 1, 8–13 (2011)

    MathSciNet  Google Scholar 

  6. Bollobaś, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, 2nd edn, p. 498. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  7. Carlitz, L.: Single variable Bell polynomials. Collect. Math. 14, 13–25 (1962)

    MathSciNet  MATH  Google Scholar 

  8. de Bruijn, N.G.: Asymptotic Methods in Analysis (Corrected Reprint of the Third Edition), p. 200. Dover Publications Inc, New York (1981)

    Google Scholar 

  9. Ding, X., Jiang, T.: Spectral distributions of adjacency and Laplacian matrices of random graphs. Ann. Appl. Probab. 20, 2086–2117 (2010)

    Article  MathSciNet  Google Scholar 

  10. Dominici, D.: Asymptotic analysis of the Bell polynomials by the ray method. J. Comput. Appl. Math. 223, 708–718 (2009)

    Article  MathSciNet  Google Scholar 

  11. Durrett, R.: Random Graph Dynamics. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  12. Elbert, Ch.: Strong asymptotics of the generating polynomials of the Stirling numbers of the second kind. J. Approx. Theory 109, 198–217 (2001)

    Article  MathSciNet  Google Scholar 

  13. Erdős, P., Rényi, A.: On random graphs. I. Publ. Math. Debr. 6, 290–297 (1959)

    MATH  Google Scholar 

  14. Erdős, P., Rényi, A.: On a new law of large numbers. J. Analyse Math. 23, 103–111 (1970)

    Article  MathSciNet  Google Scholar 

  15. Flajolet, P., Sedgewick, R.: Analytic Combinatorics, p. 810. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  16. Füredi, Z., Komlós, J.: The eigenvalues of random symmetric matrices. Combinatorica 1, 233–241 (1981)

    Article  MathSciNet  Google Scholar 

  17. Gawronski, W., Littlejohn, L.L., Neuschel, Th.: Asymptotics of Stirling and Chebyshev–Stirling numbers of the second kind. Stud. Appl. Math. 133, 1–17 (2014)

  18. Horton, M.D., Stark, H.M., Terras, A.A.: What are zeta functions of graphs and what are they good for? In: Contemporary Mathematics. Quantum Graphs and Their Applications, vol. 415, pp. 173–190 (2006)

  19. Ihara, Y.: On discrete subgroups of the two by two projective linear group over \({\mathfrak{p}}\)-adic fields. J. Math. Soc. Jpn. 18, 219–235 (1966)

    Article  MathSciNet  Google Scholar 

  20. Janson, S., Ĺuczak, T., Rucinski, A.: Random Graphs. Wiley, New York (2000)

    Book  Google Scholar 

  21. Juhász, F.: On the spectrum of a random graph, In: Algebraic Methods in Graph Theory, Vol. I, II (Szeged, 1978), Colloquia Mathematica Societatis János Bolyali, vol. 25, pp. 313–316 (1981)

  22. Khorunzhiy, O.: Stochastic version of the Erdős–Rényi limit theorem. Probability and Mathematical Statistics 22: No. 2. Acta Univ. Wratislav. No. 2470, pp. 221–230 (2002)

  23. Khorunzhiy, O.: On connected diagrams and cumulants of Erdős–Rényi matrix models. Commun. Math. Phys. 282, 209–238 (2008)

    Article  MathSciNet  Google Scholar 

  24. Khorunzhiy, O.: On eigenvalue distribution of random matrices of Ihara zeta function of large random graphs. J. Math. Phys. Anal. Geom. 13, 268–282 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Khorunzhiy, O., Shcherbina, M., Vengerovsky, V.: Eigenvalue distribution of large weighted random graphs. J. Math. Phys. 45, 1648–1672 (2004)

    Article  MathSciNet  Google Scholar 

  26. Koroljuk, V.S., Portenko, N.I., Skorohod, A.V., Turbin, A.F.: A Manual on Probability Theory and Mathematical Statistics, p. 582. Naukova Dumka, Kiev (1978)

    Google Scholar 

  27. Krivelevich, M., Sudakov, B.: The large eigenvalue of sparse random graphs. Combin. Probab. Comput. 12, 61–72 (2003)

    Article  MathSciNet  Google Scholar 

  28. Lovász, L.: Combinatorial Problems and Exercices, 2nd edn, p. 17. North-Holland, Amsterdam (1993)

    Google Scholar 

  29. McKay, B.D.: The expected eigenvalue distribution of a large regular graph. Linear Algebra Appl. 40, 203–216 (1981)

    Article  MathSciNet  Google Scholar 

  30. Moser, L., Wyman, M.: An asymptotic formula for the Bell numbers. Trans. R. Soc. Can. Sect. III 49, 49–54 (1955)

    MathSciNet  MATH  Google Scholar 

  31. On-Line Encyclopedia of Integer Sequences: https://oeis.org, sequence A308008

  32. Palmer, E.M.: Graphical Evolution: An Introduction to the Theory of Random Graphs. Wiley, Chichester (1985)

    MATH  Google Scholar 

  33. Privault, N.: Generalized Bell polynomials and the combinatorics of Poisson central moments, Paper 54. Electron. J. Combin. 18(1), 10 (2011)

    Article  Google Scholar 

  34. Stark, H.M., Terras, A.A.: Zeta functions of finite graphs and coverings. Adv. Math. 121, 124–165 (1996)

    Article  MathSciNet  Google Scholar 

  35. Tao, T.: https://terrytao.wordpress.com/2015/11/19/275a-notes-5-variants-of-the-central-limit-theorem/#more-8566

  36. Touchard, J.: Propriétés arithmétiques de certains nombres récurrents. Ann. Soc. Sci. Brux. I(53A), 21–31 (1933)

    MATH  Google Scholar 

  37. Tsylova, E.G., Ekgauz, E.Ya.: Using probabilistic models to study the asymptotic behavior of Bell numbers. J. Math. Sci. (N.Y.) 221, 609–615 (2017)

  38. Wigner, E.P.: On the distribution of the roots of certain symmetric matrices. Ann. Math. 67, 325–327 (1958)

    Article  MathSciNet  Google Scholar 

  39. Zhao, Y.-Q.: A uniform asymptotic expansion of the single variable Bell polynomials. J. Comput. Appl. Math. 150, 329–355 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Khorunzhiy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorunzhiy, O. On Asymptotic Properties of Bell Polynomials and Concentration of Vertex Degree of Large Random Graphs. J Theor Probab 35, 20–51 (2022). https://doi.org/10.1007/s10959-020-01025-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-020-01025-w

Keywords

Mathematics Subject Classification (2010)

Navigation