Skip to main content

Advertisement

Log in

Canonical Moments and Random Spectral Measures

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2015

Abstract

We study some connections between the random moment problem and random matrix theory. A uniform draw in a space of moments can be lifted into the spectral probability measure of the pair (A,e), where A is a random matrix from a classical ensemble, and e is a fixed unit vector. This random measure is a weighted sampling among the eigenvalues of A. We also study the large deviations properties of this random measure when the dimension of the matrix increases. The rate function for these large deviations involves the reversed Kullback information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, Z.D.: Methodologies in spectral analysis of large dimensional random matrices, a review. Statist. Sinica 9, 611–677 (1999)

    MATH  MathSciNet  Google Scholar 

  2. Bai, Z.D., Miao, B.Q., Pan, G.M.: On asymptotics of eigenvectors of large sample covariance matrix. Ann. Probab. 35(4), 1532–1572 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben Arous, G., Guionnet, A.: Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Related Fields 108(4), 517–542 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Birke, M., Dette, H.: A note on random orthogonal polynomial on a compact interval. Proc. Am. Math. Soc. 137, 3511–3522 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, F.C., Kemperman, J.H.B., Studden, W.J.: A normal limit theorem for moment sequences. Ann. Probab. 21(3), 1295–1309 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Collins, B., Sniady, P.: New scaling of Itzykson–Zuber integrals. Ann. Inst. H. Poincaré Probab. Statist. 43, 139–146 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dawson, D.A., Feng, S.: Large deviations for the Fleming–Viot process with neutral mutation and selection. II. Stochastic Process. Appl. 92(1), 131–162 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dawson, D.A., Feng, S.: Asymptotic behavior of the Poisson–Dirichlet distribution for large mutation rate. Ann. Appl. Probab. 16(2), 562–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  10. Dette, H., Gamboa, F.: Asymptotic properties of the algebraic moment range process. Acta Math. Hungar. 116, 247–264 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dette, H., Studden, W.: The Theory of Canonical Moments with Applications in Statistics, Probability, and Analysis. Wiley Series in Probability and Statistics. Wiley, New York (1997)

    MATH  Google Scholar 

  12. Dueñez, E.: Random matrix ensembles associated to compact symmetric spaces. Comm. Math. Phys. 244(1), 29–61 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eichelsbacher, P., Stolz, M.: Large deviations for random matrix ensembles in mesoscopic physics. Markov Process. Related Fields 14, 207–232 (2008)

    MATH  MathSciNet  Google Scholar 

  14. Forrester, P.J.: Log-Gases and Random Matrices. Book available online at http://www.ms.unimelb.edu.au/~matpjf/matpjf.html

  15. Gamboa, F., Lozada-Chang, L.V.: Large deviations for random power moment problem. Ann. Probab. 32, 2819–2837 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Gamboa, F., Rouault, A.: Large deviations for random spectral measures and sum rules. arXiv:0804.4322v1

  17. Gamboa, F., Rouault, A., Zani, M.: A functional large deviation principle for quadratic forms of Gaussian stationary processes. Statist. Probab. Lett. 43, 299–308 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ganesh, A.J., O’Connell, N.: A large deviation principle for Dirichlet posteriors. Bernoulli 6(6), 1021–1034 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. Guionnet, A., Maida, M.: A Fourier view on the R-transform and related asymptotics of spherical integrals. J. Funct. Anal. 222(2), 435–490 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hiai, F., Petz, D.: A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices. Ann. Inst. H. Poincaré Probab. Statist. 36(1), 71–85 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hiai, F., Petz, D.: The Semicircle Law, Free Random Variables and Entropy, Mathematical Surveys and Monographs, vol. 77. Am. Math. Soc., Providence (2000)

    MATH  Google Scholar 

  22. Hiai, F., Petz, D.: Large deviations for functions of two random projection matrices. Acta Sci. Math. (Szeged) 72, 581–609 (2006)

    MATH  MathSciNet  Google Scholar 

  23. Hiai, F., Petz, D., Ueda, Y.: Free transportation cost inequalities via random matrix approximation. Probab. Theory Related Fields 130(2), 199–221 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  24. Karlin, S., Shapley, L.S.: Geometry of moment spaces. Mem. Am. Math. Soc. 1953(12), 93 (1953)

    MathSciNet  Google Scholar 

  25. Karlin, S., Studden, W.J.: Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics, vol. XV. Wiley, New York (1966)

    MATH  Google Scholar 

  26. Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 50, 2665–2701 (2004)

    Article  MathSciNet  Google Scholar 

  27. Lozada-Chang, L.V.: Large deviations on moment spaces. Electron. J. Probab. 10, 662–690 (2005)

    MathSciNet  Google Scholar 

  28. Maida, M.: Large deviations for the largest eigenvalue of rank one deformations of Gaussian ensembles. Electron. J. Probab. 12, 1131–1150 (2007)

    MATH  MathSciNet  Google Scholar 

  29. Mehta, M.L.: Random Matrices, 3rd edn. Pure and Applied Mathematics, vol. 142. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  30. Najim, J.: A Cramér type theorem for weighted random variables. Electron. J. Probab. 7(4), 1–32 (2002)

    MathSciNet  Google Scholar 

  31. Orlov, A.: New solvable matrix integrals—U(n) case. Nonlinear Physics: Theory and Experiment, II Gallipoli 2002. pp. 94–100. World Sci. Publ., River Edge (2003)

    Chapter  Google Scholar 

  32. Simon, B.: New sections intended for the second edition. Available at http://www.math.caltech.edu/opuc/newsection13-3.pdf, 2005

  33. Simon, B.: OPUC on one foot. Bull. Am. Math. Soc. (N.S.) 42(4), 431–460 (2005)

    Article  MATH  Google Scholar 

  34. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 1: Classical Theory. Colloquium Publications. American Mathematical Society, vol. 54. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  35. Simon, B.: Orthogonal Polynomials on the Unit Circle. Part 2: Spectral Theory. Colloquium Publications. American Mathematical Society, vol. 51. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  36. Simon, B.: CMV matrices: five years after. J. Comput. Appl. Math. 208(1), 120–154 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Gamboa.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10959-015-0653-5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamboa, F., Rouault, A. Canonical Moments and Random Spectral Measures. J Theor Probab 23, 1015–1038 (2010). https://doi.org/10.1007/s10959-009-0239-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-009-0239-1

Keywords

Mathematics Subject Classification (2000)

Navigation