Skip to main content
Log in

On the Dedekind Zeta Function

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Let Kn be a number field of degree n over Q. By \( {A}_{K_n}(x) \) denote the number of integral ideals with norm ≤ x. Landau’s classical estimate is

$$ {A}_{K_n}(x)={\varLambda}_n x+ O\left({x}^{\left( n-1\right)/\left( n+1\right)}\right). $$

In this paper, the error term is improved for the non-normal field \( {K}_4=\mathrm{Q}\left(\sqrt[4]{m}\right) \) and for K6, the normal closure of a cubic field K3 with the Galois group S3. Bibliography: 25 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Landau, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Leipzig (1927).

  2. K. Chandrasekharan and R. Narasimhan, “On the mean value of the error term of a class of arithmetical functions,” Acta Math., 112, 41–67 (1964).

    Article  MATH  MathSciNet  Google Scholar 

  3. Y.-K. Lau, “On the mean square formula of the error term for a class of arithmetical functions,” Monatsh. Math., 128, 111–129 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  4. O. M. Fomenko, “Mean value theorems for a class of Dirichlet series,” Zap. Nauchn. Semin. POMI, 357, 201–223 (2008).

    Google Scholar 

  5. E. C. Titchmarsh, The Theory of the Riemann Zeta Function, 2nd edn, revised by D. R. Heath-Brown, New York (1986).

  6. M. N. Huxley and N. Watt, “The number of ideals in a quadratic field,” Proc. Indian Acad. Sci. (Math. Sci.), 104, 157–165 (1994).

    Article  MATH  MathSciNet  Google Scholar 

  7. W. Müller, “On the distribution of ideals in cubic number fields,” Monatsh. Math., 106, 211–219 (1988).

    Article  MATH  MathSciNet  Google Scholar 

  8. H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen, kubischen und biquadratischen Zahlkörpern, Berlin (1950).

  9. H. Hasse, “Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage,” Math. Z., 31, 565–582 (1930).

    Article  MATH  MathSciNet  Google Scholar 

  10. Algebraic Number Theory, J. W. S. Cassels and A. Frölich, eds, Academic Press, London (1967).

  11. H. Cohn, A Classical Invitation to Algebraic Numbers and Class Fields, New York etc. (1978).

  12. H. Hasse, Bericht über neuere Untersuchungen und Probleme auf der Theorie der algebraischen Zählkörper, Teil I, Teil Ia, Würzburg–Wien (1965).

    Book  Google Scholar 

  13. M. Koike, “Higher reciprocity law, modular forms of weight 1 and elliptic curves,” Nagoya Math. J., 98, 109–115 (1985).

    MATH  MathSciNet  Google Scholar 

  14. A. Ivić, “Large values of certain number-theoretic error terms,” Acta Arithm., 56, 135–159 (1990).

    MATH  Google Scholar 

  15. K. Chandrasekharan and R. Narasimhan, “The approximate functional equation for a class of zeta-functions,” Math. Ann., 152, 30–64 (1963).

    Article  MATH  MathSciNet  Google Scholar 

  16. D. R. Heath-Brown, “Mean values of the zeta function and divisor problems,” in: Recent Progress in Analytic Number Theory (Durham, 1979), Vol. 1, pp. 115–119, Academic Press (1981).

  17. A. Ivić, “On zeta-functions associated with Fourier coefficients of cusp forms,”in: Proc. Amalfi Conf. Analytic Number Theory (Amalfi, 1989), Salerno, pp. 231–246 (1992).

  18. N. Ishii, “Cusp forms of weight one, quartic reciprocity and elliptic curves,” Nagoya Math. J., 98, 117–137 (1985).

    MATH  MathSciNet  Google Scholar 

  19. J.-P. Serre, “Modular forms of weight one and Galois representations,” in: Algebraic Number Fields: Lfunctions and Galois Properties (Proc. Symp., Univ. Durham, Durham, 1975), Academic Press, London, pp. 193–268 (1977).

  20. R. M. Kaufman, “On truncated equations of A. F. Lavrik,” Zap. Nauchn. Semin. LOMI, 76, 124–158 (1978).

    MATH  Google Scholar 

  21. R. M. Kaufman, “An estimate of the Hecke L-functions on the critical line,” Zap. Nauchn. Semin. LOMI, 91, 40–51 (1979).

    MATH  Google Scholar 

  22. D. R. Heath-Brown, “The growth rate of the Dedekind zeta-function on the critical line,” Acta Arithm., 49, 323–339 (1988).

    MATH  MathSciNet  Google Scholar 

  23. K. Ramachandra, “Application of a theorem of Montgomery and Vaughan to the zeta-function,” J. London Math. Soc. (2), 10, 482–486 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Good, “Approximative Funktionalgleichungen und Mittelwertsätze f¨ur Dirichletreihen, die Spitzenformen assoziiert sind,” Comment. Math. Helv., 50, 327–361 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  25. L. Weinstein, “The mean value of the Artin L-series and its derivative of a cubic field,” Glasgow Math. J., 21, 9–18 (1980).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Fomenko.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 418, 2013, pp. 184–197.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomenko, O.M. On the Dedekind Zeta Function. J Math Sci 200, 624–631 (2014). https://doi.org/10.1007/s10958-014-1952-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-014-1952-6

Keywords

Navigation