Skip to main content
Log in

Paragraded Rings and Their Ideals

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The notions of a paragraded ring and a homogeneous ideal, which are at the same time a generalization of the classical graduation, as defined by Bourbaki, and an extension of the earlier work done by M. Krasner, were introduced by M. Krasner and M. Vuković. After recalling the notion of paragraded rings, we list and prove several facts about them. One of the most important properties is that the homogeneous part of the direct product and the direct sum of paragraded rings are the direct product and the direct sum of the corresponding homogeneous parts, respectively. Next we give the notion of a homogeneous ideal of a paragraded ring and prove that the factor ring obtained from a paragraded ring and its homogeneous ideal is also a paragraded ring. After that, we deal with basic facts about homogeneous ideals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Algèbre, Chap. II, Hermann, Paris (1962).

  2. M. Chadeyras, “Essai d’une théorie noetherienne pour les anneaux commutatifs, dont la graduation est aussi générale que possible,” Suppl. Bull. Soc. Math. Fr. Mémoire, 22, 1–143 (1970).

    MathSciNet  Google Scholar 

  3. E. Ilić-Georgijević, Paragraduirane strukture (grupe, prsteni i moduli), magistarski rad, Filozofski fakultet Pale, Univerzitet u Istočnom Sarajevu (2009).

  4. M. Krasner, “Anneaux gradués généraux,” in: Colloque d’Algébre Rennes, pp. 209–308 (1980).

  5. M. Krasner and M. Vuković, “Structures paragraduées (groupes, anneaux, modules). I,” Proc. Jpn. Acad. Ser. A, 62, No. 9, 350–352 (1986).

    Article  MATH  Google Scholar 

  6. M. Krasner and M. Vuković, “Structures paragraduées (groupes, anneaux, modules). II,” Proc. Jpn. Acad. Ser. A, 62, No. 10, 389–391 (1986).

    Article  MATH  Google Scholar 

  7. M. Krasner and M. Vuković, “Structures paragraduées (groupes, anneaux, modules). III,” Proc. Jpn. Acad. Ser. A, 63, No. 1, 10–12 (1987).

    Article  MATH  Google Scholar 

  8. M. Krasner and M. Vuković, Structures paragraduées (groupes, anneaux, modules), Queen’s Papers in Pure and Applied Mathematics, No. 77, Queen’s University, Kingston, Ontario, Canada (1987).

  9. C. Nǎstǎsescu and F. Van Oystaeyen, Methods of Graded Rings, Springer, Berlin (2004).

    Book  Google Scholar 

  10. V. Perić, Algebra. I, Svjetlost, Sarajevo (1991).

    Google Scholar 

  11. J. J. Rotman, An Introduction to Homological Algebra, Springer, Berlin (2009).

    Book  MATH  Google Scholar 

  12. M. Vuković, Structures graduées et paragraduées, Prepublication de l’Institut Fourier, Université de Grenoble I, No. 536 (2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vuković.

Additional information

Translated from Fundamentalnaya i Prikladnaya Matematika, Vol. 17, No. 4, pp. 83–93, 2011/12.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vuković, M., Ilić-Georgijević, E. Paragraded Rings and Their Ideals. J Math Sci 191, 654–660 (2013). https://doi.org/10.1007/s10958-013-1349-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-013-1349-y

Keywords

Navigation