Skip to main content
Log in

Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The Schrödinger operator H = −Δ + V is considered in a layer or in a d-dimensional cylinder. The potential V is assumed to be periodic with respect to a lattice. The absolute continuity of H is established, provided that VL p,loc, where p is a real number greater than d/2 in the case of a layer and p > max(d/2, d − 2) for a cylinder. Bibliography: 14 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Sh. Birman and T. A. Suslina, “Absolute continuity of a two-dimensional periodic magnetic Hamiltonian with discontinuous vector potential,” Algebra Analiz, 10, No. 4, 1–36 (1998).

    MathSciNet  MATH  Google Scholar 

  2. M. Sh. Birman and T. A. Suslina, “Periodic magnetic Hamiltonian with variable metrics. Problem of absolute continuity,” Algebra Aualiz, 11. No. 2, 1–40 (1999).

    MathSciNet  MATH  Google Scholar 

  3. L. I. Danilov, “On absolute continuity of the spectrum of a periodic magnetic Schrödinger operator,” J. Phys. A: Math. Theor., 42, 275204 (2009).

    Article  MathSciNet  Google Scholar 

  4. N. Filonov and I. Kachkovskii, “Absolute continuity of the spectrum of a periodic Schrödinger operator in a miiltidimensional cylinder,” Algebra Analiz, 21, No. 1, 133–152 (2009).

    MathSciNet  Google Scholar 

  5. T. Kato, Perturbation Theory for Linear Operators, Grundlehren der mathematischen Wissenschaften, 132, Springer-Verlag, Berlin-Heidelberg-New York (1966).

    Google Scholar 

  6. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 4: Analysis of Operators, Academic Press, New—York (1978).

    Google Scholar 

  7. E. Shargorodsky and A. V. Sobolev, “Quasiconformal mappings and periodic spectral problems in dimension two,” J. Anal. Math., 91, 67–103 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  8. Z. Shen, “On absolute continuity of the periodic Schrödinger operators,” Intern. Math. Res. Notes, No. 1, 1–31 (2001).

    Article  Google Scholar 

  9. R. G. Shterenberg and T. A. Suslina, “Absolute continuity of the spectrum of the Schrödinger operator with the potential concentrated on a periodic system of hypersurfaces,” Algebra Analiz, 13, No. 5, 197–240 (2001).

    Google Scholar 

  10. R. G. Shterenberg and T. A. Suslina, “Absolute continuity of the spectrum of the magnetic Schrödinger operator with a metric in a two-dimensional periodic waveguide,” Algebra Analiz, 14, No. 2, 159–206 (2002).

    MathSciNet  MATH  Google Scholar 

  11. H. F. Smith and C. D. Sogge, “On the L p norm of spectral clusters for compact manifolds with boundary,” Acta Mathematica, 198, No. 1, 107–153 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  12. C. D. Sogge, “Concerning the L p norm of spectral clusters for second—order elliptic operators on compact manifolds,” J. Funct. Anal., 77, No. 1, 123–138 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  13. T. A. Suslina, “On the absence of eigenvalues of a periodic matrix Schrödinger operator in a layer,” Russ. J. Math. Phys., 8, No. 4, 463–486 (2001).

    MathSciNet  MATH  Google Scholar 

  14. L. Thomas, “Time dependent approach to scattering from impurities in a crystal,” Commun. Math. Phys., 33, 335–343 (1973).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Kachkovskiy.

Additional information

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 385, 2010, pp. 69–82.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachkovskiy, I., Filonov, N. Absolute continuity of the spectrum of the periodic Schrödinger operator in a layer and in a smooth cylinder. J Math Sci 178, 274–281 (2011). https://doi.org/10.1007/s10958-011-0547-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-011-0547-8

Keywords

Navigation