Skip to main content
Log in

Estimates for the rate of strong Gaussian approximation for sums of i.i.d. multidimensional random vectors

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

Abstract

The aim of this paper is to derive new optimal bounds for the rate of strong Gaussian approximation of sums of i.i.d. R d-valued random variables ξj that have finite moments of the form EH (‖ξj‖), where H (x) is a monotone function growing not slower than x2 and not faster than ecx. We obtain some generalization and improvements of results of U. Einmahl (1989). Bibliography: 28 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Berkes and W. Philipp, “Approximation theorems for independent and weakly dependent random vectors,” Ann. Probab., 17, 29–54 (1979).

    Article  MathSciNet  Google Scholar 

  2. E. Berger, “Fast sichere Approximation von Partialsummen unabhängiger und stationärer ergodischer Folgen von Zufallsvectoren,” Dissertation, Universität Göttingen (1982).

  3. A. A. Borovkov, “On the rate of convergence in the invariance principle,” Teor. Veroyatn. Primen., 18, 207–225 (1973).

    MATH  Google Scholar 

  4. A. A. Borovkov and A. I. Sakhanenko, “On the rate of convergence in invariance principle,” Lect. Notes Math., 1021, 59–66 (1981).

    Article  Google Scholar 

  5. A. A. Borovkov and A. I. Sakhanenko, “On estimates of the rate of convergence in the invariance principle for Banach spaces,” Teor. Veroyatn. Primen., 25, 721–731 (1980).

    MathSciNet  Google Scholar 

  6. M. Csörgő and P. Révész, “A new method to prove Strassen type laws of invariance principle. I; II,” Z. Wahrscheinlichkeitstheor. verw. Geb., 31, 255–259; 261–269 (1975).

    Article  Google Scholar 

  7. M. Csörgő and P. Révész, Strong Approximations in Probability and Statistics, Academic Press (1981).

  8. S. Csörg"o and P. Hall, “The Komlós-Major-Tusnády approximations and their applications,” Austral. J. Statist, 26, 189–218 (1984).

    Article  MathSciNet  Google Scholar 

  9. U. Einmahl, “A useful estimate in the multidimensional invariance principle,” Probab. Theor. Rel. Fields, 76, 81–101 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  10. U. Einmahl, “Strong invariance principles for partial sums of independent random vectors,” Ann. Probab., 15, 1419–1440 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  11. U. Einmahl, “Extensions of results of Komlós, Major, and Tusnády to the multivariate case,” J. Multivar. Anal., 28, 20–68 (1989).

    Article  MATH  MathSciNet  Google Scholar 

  12. F. Götze and A. Yu. Zaitsev, “Bounds for the rate of strong approximation in the multidimensional invariance principle,” Preprint SFB 701, No. 07-057, Bielefeld University (2007).

  13. V. V. Gorodetskii, “On the rate of convergence for the multidimensional invariance principle,” Teor. Veroyatn. Primen., 20, 631–638 (1975).

    MATH  Google Scholar 

  14. J. Komlós, P. Major, and G. Tusnády, “An approximation of partial sums of independent RV’-s and the sample DF. I; II,” Z. Wahrscheinlichkeitstheor. verw. Geb., 32, 111–131 (1975); 34, 34–58 (1976).

    Article  MATH  Google Scholar 

  15. P. Major, “On the invariance principle for sums of independent identically distributed random variables,” J. Multivar. Anal., 8, 487–517 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  16. W. Philipp, “Almost sure invariance principles for sums of B-valued random variables,” Lect. Notes Math., 709, 171–193 (1979).

    Article  MathSciNet  Google Scholar 

  17. Yu. V. Prokhorov, “Convergence of random processes and limit theorems in probability theory,” Teor. Veroyatn. Primen., 1, 157–214 (1956).

    Google Scholar 

  18. A. I. Sakhanenko, “Rate of convergence in the invariance principles for variables with exponential moments that are not identically distributed,” Trudy Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 3, 4–49 (1984).

    MathSciNet  Google Scholar 

  19. A. I. Sakhanenko, “Estimates in the invariance principles,” Trudy Inst. Mat. Sib. Otd. Akad. Nauk SSSR, 5, 27–44 (1985).

    MathSciNet  Google Scholar 

  20. A. I. Sakhanenko, “A new way to obtain estimates in the invariance principle,” in: High Dimensional Probability, II (Seattle, 1999) (2000), pp. 223–245.

  21. A. I. Sakhanenko, “Estimates in the invariance principle in terms of truncated power moments,” Sib. Mat. Zh., 47, 1355–1371 (2006).

    MATH  MathSciNet  Google Scholar 

  22. Qi-Man Shao, “Strong approximation theorems for independent random variables and their applications,” J. Multivar. Anal., 52, 107–130 (1995).

    Article  MATH  Google Scholar 

  23. A. V. Skorokhod, Studies in the Theory of Random Processes [in Russian], Kiev (1961).

  24. A. Yu. Zaitsev, “Estimates of the Lévy-Prokhorov distance in the multivariate central limit theorem for random variables with finite exponential moments,” Teor. Veroyatn. Primen., 31, 203–220 (1986).

    Google Scholar 

  25. A. Yu. Zaitsev, “Multidimensional version of the results of Komlós, Major, and Tusnády for vectors with finite exponential moments,” ESAIM: Probability and Statistics, 2, 41–108 (1998).

    Article  MATH  MathSciNet  Google Scholar 

  26. A. Yu. Zaitsev, “Multidimensional version of a result of Sakhanenko in the invariance principle for vectors with finite exponential moments. I; II; III,” Teor. Veroyatn. Primen., 45, 624–641 (2002); 46, 490–514; 676–698 (2003).

    MathSciNet  Google Scholar 

  27. A. Yu. Zaitsev, “Estimates for the strong approximation in multidimensional Central Limit Theorem,” in: Proc. Intern. Congress Math., Beijing, 2002, Vol. III, Invited Lectures (2002), pp. 107–116.

    MathSciNet  Google Scholar 

  28. A. Yu. Zaitsev, “Estimates for the strong approximation in the multidimensional Central Limit Theorem,” Zap. Nauchn. Semin. POMI, 339, 37–53 (2006).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Zaitsev.

Additional information

__________

Translated from Zapiski Nauchnykh Seminarov POMI, Vol. 351, 2007, pp. 141–158.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zaitsev, A.Y. Estimates for the rate of strong Gaussian approximation for sums of i.i.d. multidimensional random vectors. J Math Sci 152, 875–884 (2008). https://doi.org/10.1007/s10958-008-9105-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-008-9105-4

Keywords

Navigation