Skip to main content
Log in

Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We study the optimal stopping problem for a monotonous dynamic risk measure induced by a Backward Stochastic Differential Equation with jumps in the Markovian case. We show that the value function is a viscosity solution of an obstacle problem for a partial integro-differential variational inequality and we provide an uniqueness result for this obstacle problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pardoux, E., Peng, S.: Backward Stochastic Differential Equations and Quasilinear Parabolic Partial Differential Equations. Lecture Notes in CIS, vol. 176, pp. 200–217. Springer, Berlin (1992)

    Google Scholar 

  2. Barles, G., Buckdahn, R., Pardoux, E.: Backward stochastic differential equations and integral-partial differential equations. Stoch. Stoch. Rep. 60(1–2), 57–83 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Royer, M.: Backward stochastic differential equations with jumps and related non-linear expectations. Stoch. Proc. Appl. 116, 1358–1376 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Quenez, M.-C., Sulem, A.: BSDEs with jumps, optimization and applications to dynamic risk measures. Stoch. Proc. Appl. 123, 3328–3357 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Quenez, M.-C., Sulem, A.: Reflected BSDEs and robust optimal stopping for dynamic risk measures with jumps. Stoch. Proc. Appl. 124, 3031–3054 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. El Karoui, N., Kapoudjian, C., Pardoux, E., Peng, S., Quenez, M.-C.: Reflected solutions of backward SDE’s, and related obstacle problems for PDE’s. Ann. Probab. 25, 702–737 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barles, G., Imbert, C.: Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Ann. Inst. H. Poincaré Anal. Non Linéaire 25, 567–585 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Dumitrescu, R., Quenez M.-C., Sulem, A.: Double barrier reflected BSDEs with jumps and generalized Dynkin games, arXiv:1310.2764 (2013)

  9. Dumitrescu R., Quenez, M.-C., Sulem, A.: Dynamic programming principle for combined optimal stopping and stochastic control with \(f\)-conditional expectations, arXiv:1407.0416 (2014)

Download references

Acknowledgments

This work was supported by grants from Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claire Quenez.

Additional information

Communicated by Moawia Alghalith.

Appendix

Appendix

1.1 Some Useful Estimates

Let \(T>0\) be a fixed terminal time. A map \(f: [0,T] \times \Omega \times \mathbb {R}^2 \times L_{\nu }^2 \rightarrow \mathbb {R}; (t, \omega , y,z,k) \mapsto f(t, \omega , y,z,k)\) is said to be a Lipschitz driver if it is predictable, uniformly Lipchitz with respect to \(y,z,k\) and such that \(f(t,0,0,0) \in \mathbb {H}^2.\)

Let \(\xi _t^1, \xi _t^2 \in \fancyscript{S}^2\). Let \(f^1 and f^2\) be two admissible Lipschitz drivers with Lipchitz constant \(C\). For \(i=1,2\), let \(\fancyscript{E}^{i}\) be the \(f^{i}\)-conditional expectation associated with driver \(f^{i}\), and let (\(Y_t^{i}\)) be the adapted process defined for each \(t \in [0,T]\),

$$\begin{aligned} Y_t^{i}:=\mathrm{ess} \sup _{\tau \in \fancyscript{T}_t} \fancyscript{E}^{i}_{t, \tau }(\xi ^{i}_\tau ). \end{aligned}$$
(48)

Proposition 6.1

For \(s \in [0,T]\), denote \(\overline{Y}_s=Y_s^1-Y_s^2\), \(\overline{\xi }_s=\xi _s^1-\xi _s^2\) and

\(\overline{f}_s= \sup _{y,z,k}|f^1(s,y,z,k)-f^2(s,y,z,k)|\). Let \(\eta , \beta >0\) be such that \(\beta \ge \dfrac{3}{\eta }+2C\) and \(\eta \le \dfrac{1}{C^2}\). Then for each \(t\), we have

$$\begin{aligned} e^{\beta t} \overline{Y}_t^2 \le e^{\beta T}\left( \mathbb {E}\left[ \sup _{s \ge t} \overline{\xi _s}^2| \fancyscript{F}_t\right] + \eta \mathbb {E}\left[ \int _t^T{\overline{f}_s^2}\mathrm{d}s|\fancyscript{F}_t\right] \right) \textsc { } a.s. \end{aligned}$$
(49)

Proof

For \(i=1,2\) and for each \(\tau \in \fancyscript{T}_{0}\), let \((X^{i,\tau }\), \(\pi _s^{i,\tau }, l_s^{i, \tau })\) be the solution of the BSDE associated with driver \(f^i\), terminal time \(\tau \), and terminal condition \(\xi _{\tau }^i\). Set \(\overline{X}_s^{\tau }=X_s^{1,\tau }-X_s^{2,\tau }\).

By a priori estimate on BSDEs (see Proposition \(A.4\) in [5]), we have

$$\begin{aligned} e^{\beta t} (\overline{X}_t^{\tau })^2&\le e^{\beta T} \mathbb {E}\left[ \overline{\xi }_{\tau }^2|\fancyscript{F}_t\right] + \eta \mathbb {E}\left[ \int _t^Te^{\beta s}(f^1(s, X_s^{2,\tau },\pi _s^{2,\tau }, l_s^{2,\tau })\right. \nonumber \\ {}&\quad \left. -f^2(s, X_s^{2,\tau },\pi _s^{2,\tau }, l_s^{2,\tau }))^2 \mathrm{d}s| \fancyscript{F}_t\right] \quad \text { a.s. } \end{aligned}$$
(50)

from which, we derive that

$$\begin{aligned} e^{\beta t} (\overline{X}_t^{\tau })^2 \le e^{\beta T} \left( \mathbb {E}\left[ \sup _{s \ge t}\overline{\xi }_{s}^2|\fancyscript{F}_t\right] + \eta \mathbb {E}\left[ \int _t^T{\overline{f}_s^2 \mathrm{d}s}| \fancyscript{F}_t\right] \right) . \end{aligned}$$
(51)

Now, by definition of \(Y^{i}\), we have \(Y_t^i =\mathrm{ess} \sup _{\tau \ge t} X_t^{i, \tau }\) a.s. for \(i=1,2\). We thus get \(|\overline{Y}_t| \le \mathrm{ess} \sup _{\tau \ge t}|\overline{X}_t^{\tau }|\) a.s. The result follows. \(\square \)

Let \(\xi _t \in \fancyscript{S}^2\). Let \(f\) be a Lipschitz driver with Lipschitz constant \(C>0\). Set

$$\begin{aligned} Y_t:=\mathrm{ess} \sup _{\tau \in \fancyscript{T}_t} \fancyscript{E}_{t, \tau }(\xi _\tau ), \end{aligned}$$
(52)

where \(\fancyscript{E}\) is the \(f\)-conditional expectation associated with driver \(f\).

Proposition 6.2

Let \(\eta , \beta >0\) be such that \(\beta \ge \dfrac{3}{\eta }+2C\) and \(\eta \le \dfrac{1}{C^2}\). Then for each \(t\), we have

$$\begin{aligned} e^{\beta t} Y_t^2 \le e^{\beta T}\left( \mathbb {E}\left[ \sup _{s \ge t} {\xi _s}^2| \fancyscript{F}_t\right] + \eta \mathbb {E}\left[ \int _t^T{f(s,0,0,0)^2}\mathrm{d}s|\fancyscript{F}_t\right] \right) \textsc { } a.s. \end{aligned}$$
(53)

Proof

Let \(X_t^{\tau }\) be the solution of the BSDE associated with driver \(f\), terminal time \(\tau \), and terminal condition \(\xi _{\tau }\). By applying inequality (50) with \(f^1=f\), \(\xi _1=\xi \), \(f^2=0\) and \(\xi ^2=0\), we get

$$\begin{aligned} e^{\beta t} (X_t^{\tau })^2 \le e^{\beta T} \mathbb {E} [\xi _{\tau }^2|\fancyscript{F}_t]+ \eta \mathbb {E} [\int _t^T{e^{\beta s}(f(s,0,0,0))^2}|\fancyscript{F}_t]. \end{aligned}$$
(54)

The result follows. \(\square \)

Remark 6.1

If the drivers satisfy Assumption 3.1 in [5], then \(Y\) (resp. \(Y^{i}\)) is the solution of the RBSDE associated with driver \(f\) (resp.\(f^{i}\)) and obstacle \(\xi \) (resp. \(\xi ^{i}\)). Hence the above estimates provide some new estimates on RBSDEs. Note that \(\eta \) and \(\beta \) are universal constants, i.e., they do not depend on \(T\), \(\xi , \xi ^1, \xi ^2, f, f^1, f^2\). This was not the case for the estimates given in the previous literature (see e.g. [6]).

1.2 Some Properties of the Value Function \(u\)

We prove below the continuity and polynomial growth of the function \(u\) defined by (8).

Lemma 6.1

The function \(u\) is continuous in \((t,x)\).

Proof

It is sufficient to show that when \((t_n, x_n) \rightarrow (t,x)\), \(|u(t_n, x_n)-u(t,x)| \rightarrow 0\).

Let \(\bar{h}\) be the map defined by \( \bar{h} (t,x) =h(t,x)\) for \(t<T\) and \(\bar{h} (T,x) =g(x)\), so that, for each \((t,x)\), we have \(\xi ^{t,x}_s = \bar{h}(s, X^{t,x}_s)\), \(0 \le s \le T\) a.s.

By applying Proposition 6.1 with \(X_s^1=X_s^{t_n,x_n}\), \(X^2_s= X_s^{t,x}\), \(f^1(s, \omega , y,z,q):= \mathbf 1 _{[t,T]}(s) f(s, X_s^{t,x}(\omega ),y,z,q)\) and

\(f^2(s, \omega , y,z,q):= \mathbf 1 _{[t_n,T]}(s) f(s, X_s^{t_n,x_n}(\omega ),y,z,q)\), we obtain

$$\begin{aligned} |u(t_n, x_n)-u(t,x)|^2 \le K_{C,T} \mathbb {E}\left[ \sup _{0\le s\le T}|\overline{h}(s, X_{s}^{t_n, x_n}) - \overline{h}(s, X_{s}^{t,x})|^2+ \int _{0}^{T}(\overline{f}_s^n)^2\right] , \end{aligned}$$

where

$$\begin{aligned}&K_{C,T}:=e^{(3C^2+2C)T}\max \left( 1, \dfrac{1}{C^2}\right) \\&\overline{f}_s^n(\omega ):=\sup _{y,z,q}|\mathbf 1 _{[t,T]}f(s, X_s^{t,x}(\omega ),y,z,q)-\mathbf 1 _{[t_n,T]}f(s, X_s^{t_n,x_n}(\omega ),y,z,q)|. \end{aligned}$$

The continuity of \(u\) is then a consequence of the following convergences as \(n\rightarrow \infty \):

$$\begin{aligned}&\mathbb {E}\left( \sup _{0\le s\le T}|\overline{h}(s, X_{s}^{t,x}\right) - \overline{h}(s, X_{s}^{t_n}( x_n))|^{2})\rightarrow 0\\&\mathbb {E}\left[ \int _{0}^{T}(\overline{f}_s^n)^{2}\mathrm{d}s\right] \rightarrow 0, \end{aligned}$$

which follow from the Lebesgue’s theorem, using the continuity assumptions and polynomial growth of \(f\) and \(h\). \(\square \)

Lemma 6.2

The function \(u\) has at most polynomial growth at infinity.

Proof

By applying Prop. 6.2 , we obtain the following estimate:

$$\begin{aligned} u(t,x)^2 \le K_{C,T}(\mathbb {E}\left( \int _{0}^{T} f(s, X_{s}^{t,x},0,0,0)^{2}\mathrm{d}s + \sup _{0\le s\le T}\overline{h}(s,X_{s}^{t,x})^{2}\right) . \end{aligned}$$
(55)

Using now the hypothesis of polynomial growth on \(f,h,g\), and the standard estimate

$$\begin{aligned} \mathbb {E}\left[ \sup _{0\le s\le T}|X_{s}^{t,x}|^{2}\right] \le C'(1+x^{2}), \end{aligned}$$

we derive that there exist \(\bar{C} \in \mathbb {R}\) and \(p\in \mathbb {N}\) such that \(|u(t,x)| \le \bar{C}(1+x^{p}),\ \forall t\in [0,T]\), \( \forall x\in \mathbb {R}.\) \(\square \)

Remark 6.2

By (55), if \((t,x) \mapsto f(t,x, 0, 0), \; h\) and \(g\) are bounded, then \(u\) is bounded.

1.3 An Extension of the Comparison Result for BSDEs with Jumps

We provide here an extension of the comparison theorem for BSDEs given in [4] which formally states that if two drivers \(f_1, f_2\) satisfy \(f_1 \ge f_2 + \varepsilon \) then the associated solutions \(X^1\) and \(X^2\) satisfy \(X_0^1 > X_0^2 \).

Proposition 6.3

Let \(t_0 \in [0,T]\) and let \(\theta \) be a stopping time such that \(\theta > t_0\) a.s.

Let \(\xi _1\) and \(\xi _2\) \(\in \) \(L^2(\mathcal{F}_{\theta })\). Let \(f_1\) be a driver. Let \(f_2\) be a Lipschitz driver. For \(i=1,2\), let \((X^i_t, \pi ^i_t, l^i_t)\) be a solution in \(S^{2} \times \mathbb {H}^{2} \times \mathbb {H}_{\nu }^{2}\) of the BSDE

$$\begin{aligned} -dX^i_t = \displaystyle f_i (t, X^i_t, \pi ^i_t, l^i_t) \mathrm{d}t - \pi ^i_t \mathrm{d}W_t - \int _{\mathbb {R}^*} l^i_t(u) \tilde{N} (\mathrm{d}t,\mathrm{d}u); \quad X^i_{\theta } = \xi _i. \end{aligned}$$
(56)

Assume that there exists a bounded predictable process \((\gamma _t)\) such that \(\mathrm{d}t\otimes dP \otimes \nu (\mathrm{d}e)\)-a.s. \( \gamma _t(e) \ge -1\) and \(|\gamma _t(e) | \le C(1 \wedge |e|)\) and such that

$$\begin{aligned} f_2(t, X^2_t, \pi ^2_t, l^1_t) - f_2(t,X^2_t,\pi ^2_t,l^2_t) \ge \langle \gamma _t\,,\, l^1_t- l^2_t \rangle _\nu , \quad t_0 \le t \le \theta ,\; \; \mathrm{d}t\otimes dP \quad \text { a.s.} \end{aligned}$$
(57)

Suppose also that

$$\begin{aligned}&\xi _1 \ge \xi _2 \quad \text { a.s. } \\&f_1 (t, X^1_t, \pi ^1_t, l^1_t) \ge f_2 (t, X^1_t, \pi ^1_t, l^1_t) +\varepsilon , \quad t_0 \le t \le \theta ,\; \; \mathrm{d}t\otimes dP \quad \text { a.s.}, \end{aligned}$$

where \(\varepsilon \) is a real constant. Then

$$\begin{aligned} X_{t_0}^1-X_{t_0}^2 \ge \varepsilon \alpha \quad \mathrm{a.s.}, \end{aligned}$$

where \(\alpha \) is a non-negative \(\mathcal{F}_{t_0}\)-measurable r.v. which does not depend on \(\varepsilon \), with \(P(\alpha >0) >0\).

Proof

From inequality (4.22) in the proof of the Comparison Theorem in [4], we derive that

$$\begin{aligned} X_{t_0}^1-X_{t_0}^2 \ge e^{-CT}\mathbb {E} \left[ \int _{t_0}^{\theta } H_{t_0,s}\, \varepsilon \,\mathrm{d}s | \fancyscript{F}_{t_0} \right] \; \quad \mathrm{a.s.}\, \end{aligned}$$

where \(C\) is the Lipschitz constant of \(f_2\), and \((H_{t_0,s})_{s \in [t_0,T]}\) is the square integrable non-negative martingale satisfying

$$\begin{aligned} d H_{t_0,s} = \displaystyle H_{t_0,s^-} \left[ \beta _s d W_s + \int _{\mathbb {R}^*} \gamma _s(u) \tilde{N}(\mathrm{d}s,\mathrm{d}u)\right] ; \quad H_{t_0,t_0} = 1, \end{aligned}$$

\((\beta _s)\) being a predictable process bounded by \(C\). We get

$$\begin{aligned} X_{t_0}^1-X_{t_0}^2 \ge e^{-CT}\varepsilon \, \mathbb {E} \left[ H_{t_0,\theta }\, (\theta - t_0) | \fancyscript{F}_{t_0} \right] \; \quad \mathrm{a.s.}\, \end{aligned}$$

Since \(\theta > t_0\) a.s. , we have \( H_{t_0,\theta }\, (\theta - t_0) \ge 0\) a.s. and \(P( H_{t_0,\theta }\, (\theta - t_0) >0) >0\). Setting \(\alpha := e^{-CT} \, \mathbb {E} \left[ H_{t_0,\theta }\, (\theta - t_0) | \fancyscript{F}_{t_0} \right] \), the result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dumitrescu, R., Quenez, MC. & Sulem, A. Optimal Stopping for Dynamic Risk Measures with Jumps and Obstacle Problems. J Optim Theory Appl 167, 219–242 (2015). https://doi.org/10.1007/s10957-014-0635-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-014-0635-2

Keywords

Mathematics Subject Classification

Navigation