Skip to main content
Log in

Lipschitz Functions and Ekeland’s Theorem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

As shown by F. Sullivan (Proc. Am. Math. Soc. 83:345–346, 1981), validity of the weak Ekeland variational principle implies completeness of the underlying metric space. In this note, we show that what really forces completeness in Sullivan’s argument is an even simpler geometric property of lower bounded Lipschitz functions. We derive the weak Ekeland principle from this new property, and use the new property to directly obtain an omnibus non-empty intersection result for decreasing sequences of closed sets that yields as special cases the theorems of Cantor and Kuratowski valid in complete metric spaces

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ekeland, I.: Nonconvex minimization problems. Bull. Am. Math. Soc. 1, 443–474 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Phelps, R.: Convex Functions, Monotone Operators and Differentiability. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  4. de Figueiredo, D.: Lectures on the Ekeland Variational Principle with Applications and Detours. Springer, Berlin (1989)

    MATH  Google Scholar 

  5. Meghea, I.: Ekeland Variational Principle with Generalizations and Variants. Éditions des archives contemporaines, Paris (2009)

    MATH  Google Scholar 

  6. Sullivan, F.: A characterization of complete metric spaces. Proc. Am. Math. Soc. 83, 345–346 (1981)

    Article  MATH  Google Scholar 

  7. Lucchetti, R.: Convexity and Well-Posed Problems. Springer, New York (2006)

    MATH  Google Scholar 

  8. Beer, G.: Topologies on Closed and Closed Convex Sets. Kluwer Academic, Dordrecht (1993)

    MATH  Google Scholar 

  9. Klein, E., Thompson, A.: Theory of Correspondences. Wiley, New York (1984)

    MATH  Google Scholar 

  10. Hiriart-Urruty, J.-B.: Extension of Lipschitz functions. J. Math. Anal. Appl. 77, 539–544 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Willard, S.: General Topology. Addison-Wesley, Reading (1970)

    MATH  Google Scholar 

  12. Cornet, B.: Topologies sur les fermés d’un espace métrique. Cahiers de mathématiques de la decision Report No. 7309, Université de Paris Dauphine (1973)

  13. Beer, G., Lechicki, A., Levi, S., Naimpally, S.: Distance functionals and the suprema of hyperspace topologies. Ann. Mat. Pura Appl. 162, 367–381 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lechicki, A., Levi, S.: Wijsman convergence in the hyperspace of a metric space. Boll. Unione Mat. Ital. (7) 1-B, 439–452 (1987)

  15. Attouch, H., Lucchetti, R., Wets, R.: The topology of the ρ-Hausdorff distance. Ann. Mat. Pura Appl. 160, 303–320 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kuratowski, K.: Topology, vol. 1. Academic Press, New York (1966)

    Google Scholar 

  17. Banaś, J., Goebel, K.: Measures of Noncompactness in Banach Spaces. Dekker, New York (1980)

    MATH  Google Scholar 

  18. Lowen, R., Sioen, M.: A unified functional look at completion in MET, UNIF, and AP. Appl. Categ. Struct. 8, 447–461 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Penot, J.-P., Zalinescu, C.: Bounded (Hausdorff) convergence: basic facts and applications. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications. Kluwer Academic, Dordrecht (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Beer.

Additional information

Communicated by Michel Théra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beer, G., Ceniceros, J. Lipschitz Functions and Ekeland’s Theorem. J Optim Theory Appl 152, 652–660 (2012). https://doi.org/10.1007/s10957-011-9942-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-011-9942-z

Keywords

Navigation