Skip to main content
Log in

Hadamard’s Formula Inside and Out

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Our goal is to explore boundary variations of spectral problems from the calculus of moving surfaces point of view. Hadamard’s famous formula for simple Laplace eigenvalues under Dirichlet boundary conditions is generalized in a number of significant ways, including Neumann and mixed boundary conditions, multiple eigenvalues, and second order variations. Some of these formulas appear for the first time here. Furthermore, we present an analytical framework for deriving general formulas of the Hadamard type.

The presented analysis finds direct applications in shape optimization and other variational problems. As a specific application, we discuss equilibrium and stable shapes of electron bubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hadamard, J.: Mémoire sur le problème d’analyse relatif à l’équilibre des plaques elastiques encastrées, Oeuvres, tome 2 (1968)

  2. Grinfeld, P., Wisdom, J.: A way to compute the gravitational potential for near-spherical geometries. Quart. Appl. Math. 64(2), 229–252 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Grinfeld, P., Strang, G.: Laplace eigenvalues on polygons. Comput. Math. Appl. 48, 1121–1133 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bareket, M.: On an isoperimetric inequality for the first eigenvalue of a boundary value problem. J. Comput. Appl. Math. 198(1), 1–18 (2007)

    Article  MathSciNet  Google Scholar 

  5. Grinfeld, M.: Thermodynamic Methods in the Theory of Heterogeneous Systems. Longman, New York (1991)

    Google Scholar 

  6. Grinfeld, P.: Hamiltonian dynamic equations for fluid films. Stud. Appl. Math. (2010, in press). doi:10.1111/j.1467-9590.2010.00485.x

    Google Scholar 

  7. Osher, S.J., Santosa, F.: Level set methods for optimization problems involving geometry and constraints. J. Comput. Phys. 171, 272–288 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allaire, G., Jouve, F., Toader, A.-M.: A level-set method for shape optimization. C. R. Acad. Sci. Paris 334(12), 1–22 (2002)

    MathSciNet  Google Scholar 

  9. Lurie, K.: Applied Optimal Control Theory of Distributed Systems. Plenum Press, New York (1993)

    MATH  Google Scholar 

  10. Garabedian, P., Schiffer, M.: Convexity of domain functionals. J. Anal. Math. 2, 281–369 (1952–1953)

    Article  MathSciNet  Google Scholar 

  11. Grinfeld, P.: Generalization of Hadamard’s Laplace eigenvalue formula to moving embedded manifolds. J. Geom. Sym. Phys. 15, 43–52 (2009)

    MathSciNet  MATH  Google Scholar 

  12. Hadamard, J.: Leçons sur la Propagation des Ondes et les Équations de l’Hydrodynamique. Hermann, Paris (1903)

    MATH  Google Scholar 

  13. Schiffer, M.: Variation of Domain Functionals. Bull. Am. Math. Soc. 60(4), 303–328 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garabedian, P.: Partial Differential Equations. Wiley, New York (1964)

    MATH  Google Scholar 

  15. Kozlov, V.: On the Hadamard formula for nonsmooth domains. J. Differ. Equ. 230, 532–555 (2006)

    Article  MATH  Google Scholar 

  16. Rayleigh, J.: The Theory of Sound. Dover, New York (1945)

    MATH  Google Scholar 

  17. Epele, L., Fanchiotti, H., Canal, C.G.: Second order corrected Hadamard formulae. Ann. Phys. 41, 237–356 (1984)

    Article  MATH  Google Scholar 

  18. Schiffer, M.: Hadamard’s formula and variation of domain-functions. Am. J. Math. 68(3), 417–448 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sokolowski, J., Zolesio, J.: Introduction to Shape Optimization, Shape Sensitivity Analysis. Springer, Berlin (1992)

    MATH  Google Scholar 

  20. Henrot, A.: Extremum Problems for Eigenvalues of Elliptic Operators. Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  21. Fujiwara, D., Tanikawa, M., Yukita, S.: The spectrum of the Laplacian and boundary perturbation. Proc. Jpn. Acad. 4A, 87–91 (1978)

    MathSciNet  Google Scholar 

  22. Shimakura, N.: La première valeur propre du Laplacien pour le problème de Dirichlet. Journées équations aux dérivées partielles S14, 1–9 (1981)

    Google Scholar 

  23. Stokes, G.: On a difficulty in the theory of sound. Philos. Mag. 23, 349–356 (1848)

    Google Scholar 

  24. Kelvin, L.: On the equation of the bounding surface. Cambr. Dubl. Math. J. 3, 89–93 (1848)

    Google Scholar 

  25. Christoffel, E.: Untersuchungen uber die mit dean Fortbestehen linearer partieller Differentialgleichungen vertraglichen Unstetigkeiten. Ann. Mat. 8, 81–113 (1877)

    Article  Google Scholar 

  26. Hugoniot, P.: Sur la propagation du mouvement dans un fluide indéfini (Premiere Partie). C. R. Acad. Sci. 3, 1118–1120 (1887)

    Google Scholar 

  27. Hugoniot, P.: Sur la propagation du mouvement dans un fluide indéfini (Duexieme Partie). C. R. Acad. Sci. 3, 1229–1232 (1887)

    Google Scholar 

  28. Truesdell, C.: On curved shocks in steady plane flow of an ideal gas. J. Aerosol. Sci. 19, 826–828 (1952)

    MathSciNet  MATH  Google Scholar 

  29. Lighthill, M.: Dynamics of a dissociating gas. J. Fluid Mech. 2(1), 1–32 (1957)

    Article  MathSciNet  Google Scholar 

  30. Hayes, W.: The vorticity jump across a gasdynamic discontinuity. J. Fluid Mech. 2(6), 595–600 (1957)

    Article  MATH  Google Scholar 

  31. Thomas, T.: Extended compatibility conditions for the study of surface of discontinuity in continuum mechanics. J. Math. Mech. 6, 311–322 (1957)

    MathSciNet  Google Scholar 

  32. Thomas, T.: Plastic Flow and Fracture in Solids. Academic Press, New York (1961)

    MATH  Google Scholar 

  33. Truesdell, C., Toupin, R.: The Classical Field Theories. Springer, Berlin (1960)

    Google Scholar 

  34. Bowen, R., Wang, C.: On displacement derivatives. Q. Appl. Math. 29, 29–39 (1971)

    MathSciNet  MATH  Google Scholar 

  35. Grinfeld, M.: Continuum methods in the theory of phase transitions in solids. Phys. Earth Planet. Inter. 50, 99–109 (1988)

    Article  Google Scholar 

  36. McConnell, A.J.: Applications of Tensor Analysis. Dover Publications, New York (1957)

    Google Scholar 

  37. Levi-Civita, T.: The Absolute Differential Calculus (Calculus of Tensors). Dover Publications, New York (1977)

    Google Scholar 

  38. Maris, H.J., Balibar, S.: Negative pressures and cavitation in liquid helium. Phys. Today 29–34, 53 (2000)

    Google Scholar 

  39. Konstantinov, D., Maris, H.J.: Detection of excited-state electron bubbles in superfluid helium. Phys. Rev. Lett. 90, 25302 (2003)

    Article  Google Scholar 

  40. Grinfeld, P., Kojima, H.: Instability of the 2S electron bubbles. Phys. Rev. Lett. 91(10), 105301 (2003)

    Article  Google Scholar 

  41. Grinfeld, P.: Shape optimization and electron bubbles. Numer. Funct. Anal. Optim. 30(7–8), 689–710 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Maris, H.J., Guo, W.: Calculation of the shape of S-state electron bubbles in liquid helium. J. Low Temp. Phys. 148, 207–211 (2007)

    Article  Google Scholar 

  43. Grinfeld, P., Strang, G.: Laplace eigenvalues on regular polygons: A series in 1/N. Trans. Am. Math. Soc. (2009, submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Grinfeld.

Additional information

Communicated by K.A. Lurie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grinfeld, P. Hadamard’s Formula Inside and Out. J Optim Theory Appl 146, 654–690 (2010). https://doi.org/10.1007/s10957-010-9681-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-010-9681-6

Keywords

Navigation