Skip to main content
Log in

A New Family of Solvable Pearson-Dirichlet Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

An n-step Pearson-Gamma random walk in ℝd starts at the origin and consists of n independent steps with gamma distributed lengths and uniform orientations. The gamma distribution of each step length has a shape parameter q>0. Constrained random walks of n steps in ℝd are obtained from the latter walks by imposing that the sum of the step lengths is equal to a fixed value. Simple closed-form expressions were obtained in particular for the distribution of the endpoint of such constrained walks for any dd 0 and any n≥2 when q is either \(q = \frac{d}{2} - 1 \) (d 0=3) or q=d−1 (d 0=2) (Le Caër in J. Stat. Phys. 140:728–751, 2010). When the total walk length is chosen, without loss of generality, to be equal to 1, then the constrained step lengths have a Dirichlet distribution whose parameters are all equal to q and the associated walk is thus named a Pearson-Dirichlet random walk. The density of the endpoint position of a n-step planar walk of this type (n≥2), with q=d=2, was shown recently to be a weighted mixture of 1+floor(n/2) endpoint densities of planar Pearson-Dirichlet walks with q=1 (Beghin and Orsingher in Stochastics 82:201–229, 2010). The previous result is generalized to any walk space dimension and any number of steps n≥2 when the parameter of the Pearson-Dirichlet random walk is q=d>1. We rely on the connection between an unconstrained random walk and a constrained one, which have both the same n and the same q=d, to obtain a closed-form expression of the endpoint density. The latter is a weighted mixture of 1+floor(n/2) densities with simple forms, equivalently expressed as a product of a power and a Gauss hypergeometric function. The weights are products of factors which depends both on d and n and Bessel numbers independent of d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pearson, K.: The problem of the random walk. Nature 72, 294 (1905)

    Article  ADS  Google Scholar 

  2. Pearson, K.: The problem of the random walk. Nature 72, 342 (1905)

    Article  ADS  Google Scholar 

  3. Pearson, K.: A Mathematical Theory of Random Migration, Mathematical Contributions to the Theory of Evolution XV. Draper’s Company Research Memoirs, Biometric Series. Dulau and Co, London (1906)

    Google Scholar 

  4. Rayleigh, J.W.S.: The problem of the random walk. Nature 72, 318 (1905)

    Article  ADS  Google Scholar 

  5. Borwein, J.M., Nuyens, D., Straub, A., Wan, J.: Random walks in the plane. In: 22nd International Conference on Formal Power Series and Algebraic Combinatorics, FPSAC 2010, San Francisco (USA). Discrete Mathematics and Theoretical Computer Science, DMTCS Proc. AN, pp. 155–166 (2010) and http://www.carma.newcastle.edu.au/~jb616/ (2010)

    Google Scholar 

  6. Borwein, J.M., Straub, A., Wan, J., Zudilin, W.: Densities of short uniform random walks. http://www.carma.newcastle.edu.au/~jb616/ (2011)

  7. Kiefer, J.E., Weiss, G.H.: The Pearson random walk. AIP Conf. Proc. 109, 11–32 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  8. Stannard, A., Coles, P.: Random-walk statistics and the spherical harmonic representation of CMB maps. Mon. Not. R. Astron. Soc. 364, 929–933 (2005)

    Article  ADS  Google Scholar 

  9. Codling, E.A., Plank, M.J., Benhamou, S.: Random walk models in biology. J. R. Soc. Interface 5, 813–834 (2008)

    Article  Google Scholar 

  10. Stadje, W.: The exact probability distribution of a two-dimensional random walk. J. Stat. Phys. 46, 207–216 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  11. Conolly, B., Roberts, D.: Random walk models for search with particular reference to a bounded region. Eur. J. Oper. Res. 28, 308–320 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zoia, A., Dumonteil, E., Mazzolo, A.: Collision densities and mean residence times for d-dimensional exponential flights. Phys. Rev. E 83, 041137 (2011) (11 pages)

    Article  ADS  Google Scholar 

  13. Franceschetti, M.: When a random walk of fixed length can lead uniformly anywhere inside a hypersphere. J. Stat. Phys. 127, 813–823 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Orsingher, E., De Gregorio, A.: Random flights in higher spaces. J. Theor. Probab. 20, 769–806 (2007)

    Article  MATH  Google Scholar 

  15. Kolesnik, A.D.: A four dimensional random motion at finite speed. J. Appl. Probab. 43, 1107–1118 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kolesnik, A.D.: Random motions at finite speed in higher dimensions. J. Stat. Phys. 131, 1039–1065 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Kolesnik, A.D.: Asymptotic relation for the density of a multidimensional random evolution with rare Poisson switchings. Ukr. Math. J. 60, 1915–1926 (2008)

    Article  MathSciNet  Google Scholar 

  18. Kolesnik, A.D.: The explicit probability distribution of a six-dimensional random flight. Theory Stoch. Process. 15, 33–39 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Beghin, L., Orsingher, E.: Moving randomly amid scattered obstacles. Stochastics 82, 201–229 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Le Caër, G.: A Pearson random walk with steps of uniform orientation and Dirichlet distributed lengths. J. Stat. Phys. 140, 728–751 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. National Institute of Standards and Technology and Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  22. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  23. Fang, K.-T., Kotz, S., Ng, K.-W.: Symmetric Multivariate and Related Distributions. Chapman & Hall, London (1990)

    MATH  Google Scholar 

  24. Johnson, N.L., Kotz, S.: Distributions in Statistics Continuous Univariate Distributions, vol. 1. Wiley, New York (1970)

    MATH  Google Scholar 

  25. Gradshteyn, I.S., Ryzhik, I.M.: Tables of Integrals, Series and Products. Academic Press, New York (1980)

    Google Scholar 

  26. The On-Line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org (2010). Sequence A 100861

  27. Choi, J.Y., Smith, J.D.H.: On the unimodality and combinatorics of Bessel numbers. Discrete Math. 264, 45–53 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Boas, R.P.: On a generalization of the Stieltjes moment problem. Trans. Am. Math. Soc. 46, 142–150 (1939)

    MathSciNet  Google Scholar 

  29. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gérard Le Caër.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Caër, G. A New Family of Solvable Pearson-Dirichlet Random Walks. J Stat Phys 144, 23–45 (2011). https://doi.org/10.1007/s10955-011-0245-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0245-4

Keywords

Navigation