Skip to main content
Log in

Noise Filtering Strategies in Adaptive Biochemical Signaling Networks

Application to E. Coli Chemotaxis

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Two distinct mechanisms for filtering noise in an input signal are identified in a class of adaptive sensory networks. We find that the high-frequency noise is filtered by the output degradation process through time-averaging; while the low-frequency noise is damped by adaptation through negative feedback. Both filtering processes themselves introduce intrinsic noises, which are found to be unfiltered and can thus amount to a significant internal noise floor even without signaling. These results are applied to E. coli chemotaxis. We show unambiguously that the molecular mechanism for the Berg-Purcell time-averaging scheme is the dephosphorylation of the response regulator CheY-P, not the receptor adaptation process as previously suggested. The high-frequency noise due to the stochastic ligand binding-unbinding events and the random ligand molecule diffusion is averaged by the CheY-P dephosphorylation process to a negligible level in E. coli. We identify a previously unstudied noise source caused by the random motion of the cell in a ligand gradient. We show that this random walk induced signal noise has a divergent low-frequency component, which is only rendered finite by the receptor adaptation process. For gradients within the E. coli sensing range, this dominant external noise can be comparable to the significant intrinsic noise in the system. The dependence of the response and its fluctuations on the key time scales of the system are studied systematically. We show that the chemotaxis pathway may have evolved to optimize gradient sensing, strong response, and noise control in different time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berg, H.C., Purcell, E.M.: Biophys. J. 20, 193–219 (1977)

    Article  ADS  Google Scholar 

  2. Bialek, W., Setayeshgar, S.: Proc. Natl. Acad. Sci. USA 102, 10040–10045 (2005)

    Article  ADS  Google Scholar 

  3. Endres, R.G., Wingreen, N.S.: Phys. Rev. Lett. 103, 158101 (2009)

    Article  ADS  Google Scholar 

  4. Mora, T., Wingreen, N.S.: Phys. Rev. Lett. 104, 248101 (2010)

    Article  ADS  Google Scholar 

  5. Wang, K., Rappel, W.J., Kerr, R., Levine, H.: Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 75, 061905 (2007)

    Article  Google Scholar 

  6. Endres, R.G., Wingreen, N.S.: Proc. Natl. Acad. Sci. USA 105, 15749–15754 (2008)

    Article  ADS  Google Scholar 

  7. Berg, C.H., Brown, D.A.: Nature 239, 500–504 (1972)

    Article  ADS  Google Scholar 

  8. Torre, V., Ashmore, J.F., Lamb, T.D., Menini, A.: J. Neurosci. 15, 7757–7768 (1995)

    Google Scholar 

  9. Muzzey, D., Gmez-Uribe, C.A., Mettetal, J.T., van Oudenaarden, A.: Cell 138, 160–171 (2009)

    Article  Google Scholar 

  10. Yi, T.M., Huang, Y., Simon, M.I., Doyle, J.: Proc. Natl. Acad. Sci. USA 97, 4649–4653 (2000)

    Article  ADS  Google Scholar 

  11. Mello, B.A., Tu, Y.: Biophys. J. 92, 2329–2337 (2007)

    Article  ADS  Google Scholar 

  12. Andrews, B.W., Yi, T.M., Iglesias, P.A.: PLoS Comput. Biol. 2, e154 (2006)

    Article  ADS  Google Scholar 

  13. Tu, Y., Shimizu, T.S., Berg, H.C.: Proc. Natl. Acad. Sci. USA 105, 14855–14860 (2008)

    Article  ADS  Google Scholar 

  14. Ma, W., Trusina, A., El-Samad, H., Lim, W.A., Tang, C.: Cell 138, 760–773 (2009)

    Article  Google Scholar 

  15. Mello, B.A., Tu, Y.: Biophys. J. 84, 2943–2956 (2003)

    Article  ADS  Google Scholar 

  16. Sontag, E.D.: Syst. Control Lett. 50(2), 119–126 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  17. Shimizu, T.S., Tu, Y., Berg, H.C.: Mol. Syst. Biol. 6, 382 (2010)

    Article  Google Scholar 

  18. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Noth-Holland, Amsterdam (2007)

    Google Scholar 

  19. Landau, L.D., Lifshitz, E.M.: Statistical Physics: Part II. Pergamon Press, Oxford (1980)

    Google Scholar 

  20. Kim, K.K., Yokota, H., Kim, S.H.: Nature 400, 787–792 (1999)

    Article  ADS  Google Scholar 

  21. Ueda, M., Sako, Y., Tanaka, T., Devreotes, P., Yanagida, T.: Science 294, 864–867 (2001)

    Article  ADS  Google Scholar 

  22. Funamoto, S., Meili, R., Lee, S., Parry, L., Firtel, R.A.: Cell 109, 611–623 (2002)

    Article  Google Scholar 

  23. Berg, H.C.: Random Walks in Biology. Princeton University Press, Princeton (1993)

    Google Scholar 

  24. Yevgeniy, V., Jiang, L., Tu, Y., Wu, M.: Biophys. J. 96, 2439–2448 (2009)

    Article  Google Scholar 

  25. Jiang, L., Ouyang, Q., Tu, Y.: PLoS Comput. Biol. 6, e1000735 (2010)

    Article  MathSciNet  Google Scholar 

  26. Strong, S.P., Freedman, B., Bialek, W., Koberle, R.: Phys. Rev. E 57, 4604–4617 (1998)

    Article  ADS  Google Scholar 

  27. Tu, Y., Grinstein, G.: Phys. Rev. Lett. 94, 208101 (2005)

    Article  ADS  Google Scholar 

  28. Korobkova, E., Emonet, T., Vilar, J.M., Shimizu, T.S., Cluzel, P.: Nature 428, 574–578 (2004)

    Article  ADS  Google Scholar 

  29. Emonet, T., Cluzel, P.: Proc. Natl. Acad. Sci. USA 105, 3304–3309 (2008)

    Article  ADS  Google Scholar 

  30. Kollmann, M., Lvdok, L.K.B., Timmer, J., Sourjik, V.: Nature 438, 504–507 (2005)

    Article  ADS  Google Scholar 

  31. Tostevin, F., Ten Wolde, P.R.: Phys. Rev. Lett. 102, 218101 (2009)

    Article  ADS  Google Scholar 

  32. Tanase-Nicola, S., Warren, P.B., Ten Wolde, P.R.: Phys. Rev. Lett. 97, 068102 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhai Tu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sartori, P., Tu, Y. Noise Filtering Strategies in Adaptive Biochemical Signaling Networks. J Stat Phys 142, 1206–1217 (2011). https://doi.org/10.1007/s10955-011-0169-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-011-0169-z

Keywords

Navigation