Skip to main content

Advertisement

Log in

More is the Same; Phase Transitions and Mean Field Theories

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper is the first in a series that will look at the theory of phase transitions from the perspectives of physics and the philosophy of science. The series will consider a group of related concepts derived from condensed matter and statistical physics. The key technical ideas go under the names of “singularity”, “order parameter”, “mean field theory”, “variational method”, “correlation length”, “universality class”, “scale changes”, and “renormalization”. The first four of these will be considered here.

In a less technical vein, the question here is how can matter, ordinary matter, support a diversity of forms. We see this diversity each time we observe ice in contact with liquid water or see water vapor (steam) come up from a pot of heated water. Different phases can be qualitatively different in that walking on ice is well within human capacity, but walking on liquid water is proverbially forbidden to ordinary humans. These differences have been apparent to humankind for millennia, but only brought within the domain of scientific understanding since the 1880s.

A phase transition is a change from one behavior to another. A first order phase transition involves a discontinuous jump in some statistical variable. The discontinuous property is called the order parameter. Each phase transition has its own order parameter. The possible order parameters range over a tremendous variety of physical properties. These properties include the density of a liquid-gas transition, the magnetization in a ferromagnet, the size of a connected cluster in a percolation transition, and a condensate wave function in a superfluid or superconductor. A continuous transition occurs when the discontinuity in the jump approaches zero. This article is about statistical mechanics and the development of mean field theory as a basis for a partial understanding of phase transition phenomena.

Much of the material in this review was first prepared for the Royal Netherlands Academy of Arts and Sciences in 2006. It has appeared in draft form on the authors’ web site (http://jfi.uchicago.edu/~leop/) since then.

The title of this article is a hommage to Philip Anderson and his essay “More is Different” (Sci. New Ser. 177(4047):393–396, 1972; N.-P. Ong and R. Bhatt (eds.) More is Different: Fifty Years of Condensed Matter Physics, Princeton Series in Physics, Princeton University Press, 2001) which describes how new concepts, not applicable in ordinary classical or quantum mechanics, can arise from the consideration of aggregates of large numbers of particles. Since phase transitions only occur in systems with an infinite number of degrees of freedom, such transitions are a prime example of Anderson’s thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Anderson, P.W.: More is different. Sci. New Ser. 177(4047), 393–396 (1972)

    Google Scholar 

  2. Ong, N.-P., Bhatt, R. (eds.): More is Different: Fifty Years of Condensed Matter Physics. Princeton Series in Physics. Princeton University Press, Princeton (2001)

    Google Scholar 

  3. Van Till, H.J.: Basil, Augustine, and the Doctrine of Creation’s Functional Integrity. Sci. Christ. Belief 8(1), 21–38 (1996)

    Google Scholar 

  4. Ehrenfest, P.: Proc. K. Akad. Akad. Wet. Amst. 36, 147 (1933)

    Google Scholar 

  5. Daugherty, D.: Elaborating the crystal concept: scientific modeling and ordered states of matter. PhD Thesis, Committee on Conceptual and Historical Studies of Science, University of Chicago (2007)

  6. Willard Gibbs, J.: Elementary Principles of Statistical Mechanics. Scribner’s, New York (1902)

    MATH  Google Scholar 

  7. Bumstead, H.A., Van Name, R.G. (eds.): Scientific Papers of J. Willard Gibbs, 2 vols. (1961). ISBN 0918024773

  8. Domb, C.: The Critical Point. Taylor & Francis, London (1996)

    Google Scholar 

  9. Ising, E.: Z. Phys. 31, 253 (1925)

    Article  ADS  Google Scholar 

  10. Brush, S.G.: History of the Lenz-Ising Model. Rev. Mod. Phys. 39, 883–893 (1967)

    Article  ADS  Google Scholar 

  11. Gallavotti, G.: Entropy, nonequilibrium, chaos and infinitesmals, p. 54 in [12]

  12. Gallavotti, G., Reiter, W.L., Ygnvason, J. (eds.): Boltzmann’s Legacy. European Mathematical Society (2008)

  13. Wightman, A.: On the prescience of J. Willard Gibbs. In Caldi, D.G., Mostow, G.D. (eds.) Proceedings of the Gibbs Symposium, Yale University May 15–17, 1989. American Mathematical Society and American Institute of Physics (1989)

  14. Uhlenbeck, G.E.: Some historical and critical remarks about the theory of phase transitions. In: Fujita, S. (ed.) Science of Matter: Festschrift in Honor of Professor Ta-You Wu. Gordon & Breach, New York (1978)

    Google Scholar 

  15. Cohen, E.G.D.: Private communication

  16. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1969)

    MATH  Google Scholar 

  17. Dunkel, J., Hilbert, S.: Phase transition in small systems: microcanonical vs. canonical ensembles. arXiv:cond-mat/0511501v4

  18. www.phys.au.dk/~fogedby/statphysII/no-PT-in-1D.pdf

  19. Peierls, R.: Proc. Camb. Philos. Soc. 32, 477 (1936)

    Article  MATH  Google Scholar 

  20. Griffiths, R.: Peierls proof of spontaneous magnetization in a two-dimensional Ising ferromagnet. Phys. Rev. 136, A437–A439 (1964)

    Article  ADS  Google Scholar 

  21. Batterman, R.W.: Idealization and Modeling. Synthesis doi:10.1007. http://www.romanfrigg.org/Links/MS1/Synthese_MS1_Batterman.pdf

  22. Batterman, R.W.: The Devil in the Details. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  23. Berry, M.V.: Asymptotics, singularities and the reduction of theories. In: Prawitz, D., Skyrms, B., Westerstahl, D. (eds.) Proc. 9th Int. Cong. Logic, Method., and Phil. of Sci., vol. IX, pp. 597-607 (1994)

  24. Curie, P.: Ann. Chem. Phys. 5, 289 (1895)

    Google Scholar 

  25. Weiss, P.: J. Phys. 6, 661 (1907)

    Google Scholar 

  26. Maxwell, J.C.: Nature 10, 407 (1874) 11 418 (1875)

    Article  Google Scholar 

  27. Onsager, L.: Phys. Rev. 65, 117 (1944)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. Yang, C.N.: Phys. Rev. 85, 808 (1952)

    Article  MATH  ADS  Google Scholar 

  29. van der Waals, J.D.: Thesis Leiden (1873)

  30. http://en.wikipedia.orgwikiVan_der_Waals_equation

  31. Sengers, J.L.: How Fluids Unmix. Koninklijke Nederlandse Akademie van Wetenschappen, Amsterdam (2002)

    MATH  Google Scholar 

  32. Andrews, T.: On the continuity of the gaseous and liquid states of matter. Philos. Trans. R. Soc. 159, 575–590 (1869). Reprinted in: T. Andrews, The Scientific Papers. Macmillan, London (1889)

    Article  Google Scholar 

  33. Nagel, E.: The Structure of Science. Routledge & Kegan Paul, London (1961)

    Google Scholar 

  34. Batterman, R.W.: Reduction. In: Bouchart, D. (ed.) Encyclopedia of Philosophy, 2nd edn. Macmillan, Detroit (2006)

    Google Scholar 

  35. Schrödinger, E.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1957)

    MATH  Google Scholar 

  36. Kuhn, T.S.: The Structure of Scientific Revolutions, 1st. edn. University of Chicago Press, Chicago (1962)

    Google Scholar 

  37. Bragg, W.L., Williams, E.J.: The effect of thermal agitation on atomic arrangement in alloys. Proc. R. Soc. Lond. A 145, 699–730 (1934)

    Article  ADS  Google Scholar 

  38. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Microscopic theory of superconductivity. Phys. Rev. 106, 162–164 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  39. Bardeen, J., Cooper, L.N., Schrieffer, J.R.: Theory of superconductivity. Phys. Rev. 108, 1175 (1957)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. Néel, L.: Propriétées magnétiques des ferrites; Férrimagnétisme et antiferromagnétisme. Ann. Phys. Paris 3, 137–198 (1948)

    Google Scholar 

  41. Griffin, A.: arXiv:cond-mat/9901123v1, 13 Jan 1999

  42. Landau, L.D.: Phys. Z. Sow. 11, 26545 (1937). English Translation: Collected Papers of Landau, L.D., ter Haar, D. (eds.), pp. 193–215. Pergamon Press, Oxford (1965)

    Google Scholar 

  43. Kadanoff, L.P., Gotze, W., Hamblen, D., Hecht, R., Lewis, E.A.S., Palciauskas, V.V., Rayl, M., Swift, J., Aspnes, D., Kane, J.W.: Static Phenomena Near Critical Points: Theory and Experiment. Rev. Mod. Phys. 39, 395 (1967)

    Article  ADS  Google Scholar 

  44. Milton, K.A., Schwinger, J.: Electromagnetic Radiation: Variational Methods, Waveguides and Accelerators: Including Seminal Papers of Julian Schwinger. Springer, Berlin (2006). ISBN:3540292233

    Google Scholar 

  45. Galison, P.: Image and Logic: A Material Culture of Microphysics, p. 820. University of Chicago Press, Chicago (1997). ISBN 0226279170, 9780226279176

    Google Scholar 

  46. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw–Hill, New York (1965). ISBN 0-07-020650-3

    MATH  Google Scholar 

  47. Feynman, R.P.: Slow Electrons in a Polar Crystal. Phys. Rev. 97, 660 (1955)

    Article  MATH  ADS  Google Scholar 

  48. Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amst. 17, 793 (1914)

    Google Scholar 

  49. Ornstein, L.S., Zernike, F.: Proc. Acad. Sci. Amst. 18, 1520 (1916)

    Google Scholar 

  50. Ginzburg, V.L., Landau, L.D.: J. Exp. Theor. Phys. 20, 1064 (1950)

    Google Scholar 

  51. Abrikosov, A.A.: On the magnetic properties of superconductors of the second group. Sov. Phys. JETP 5, 1174 (1957)

    Google Scholar 

  52. Landau, L.D.: J. Exp. Theor. Phys. 5, 71 (1941)

    Google Scholar 

  53. Green, M.S., Sengers, J.V. (eds.): Critical Phenomena. Proceedings of a Conference Held in Washington, D.C., April 1965, United States Department of Commerce, National Bureau of Standards (1965)

  54. Fisher, M.E.: The theory of equilibrium critical phenomena. Rep. Prog. Phys. XXX(II), 615 (1967)

    Article  ADS  Google Scholar 

  55. Heller, P.: Experimental investigations of critical phenomena. Rep. Prog. Phys. XXX(II), 731 (1967)

    Article  ADS  Google Scholar 

  56. Patashinskii, A.Z., Pokrovskii, V.L.: Sov. Phys. JETP 19, 667 (1964)

    MathSciNet  Google Scholar 

  57. Widom, B.: J. Chem. Phys. 43, 3892 (1965)

    Article  ADS  Google Scholar 

  58. Widom, B.: J. Chem. Phys. 43, 3896 (1965)

    ADS  Google Scholar 

  59. Patashinskii, A.Z., Pokrovskii, V.L.: Fluctuation Theory of Phase Transitions. Elsevier, Amsterdam (1979)

    Google Scholar 

  60. Kadanoff, L.: Physics 2, 263 (1966)

    Google Scholar 

  61. Stueckelberg, E.C.G., Peterman, A.: Helv. Phys. Acta 26, 499 (1953)

    MATH  MathSciNet  Google Scholar 

  62. Gell-Mann, M., Low, F.E.: Phys. Rev. 95, 1300 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  63. Wilson, K.G.: Phys. Rev. B 4, 3174 (1971)

    Article  ADS  Google Scholar 

  64. Wilson, K.G.: Phys. Rev. B 4, 3184 (1971)

    Article  ADS  Google Scholar 

  65. Cao, T.Y. (ed.): Conceptual Foundations of Quantum Field Theory. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  66. Rukeyser, M.: Willard Gibbs: American Genius. Ox Bow Press, Woodbridge (1942). ISBN 0918024579

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leo P. Kadanoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kadanoff, L.P. More is the Same; Phase Transitions and Mean Field Theories. J Stat Phys 137, 777–797 (2009). https://doi.org/10.1007/s10955-009-9814-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-009-9814-1

Keywords

Navigation