Skip to main content
Log in

Acid–Base Properties and Kinetics of Hydrolysis of Aroylhydrazones Derived from Nicotinic Acid Hydrazide

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A series of aroylhydrazones were synthesized from nicotinic acid hydrazide and differently substituted benzaldehydes. The protonation constants of the 12 resulting hydrazones, as well as of the starting compounds, were determined in methanol/water 1/1 mixtures by spectrophotometric–potentiometric batch titrations. In order to determine the effect of substituents on the stability of the C=N bond, the kinetics of hydrolysis of hydrazones was studied spectrophotometrically in acidic and basic media. The HPLC method was used for investigation of the hydrolysis of selected compounds, for which equilibrium between hydrolysis and the condensation reaction was observed. The observed rate constants, calculated from chromatographic and spectrophotometric data, are in good agreement. Electrospray mass spectrometry was used for determination of reaction products. Oxidation and formation of quinones in basic media were observed for the 2,3- and 2,5-dihydroxy substituted benzaldehyde derivatives. On the other hand, the 2,4-dihydroxy derivative showed higher stability compared to N′-salicylidene-3-pyridinecarbohydrazide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Garau, A., Oliver, M., Rosende, M., Mánuel-Vez, M.P., Miró, M.: High-throughput automatic flow method for determination of trace concentrations of aluminium in dialysis concentrate solutions using salicylaldehyde picolinoylhydrazone as a turn-on fluorescent probe. Talanta 133, 120–126 (2015)

    Article  CAS  Google Scholar 

  2. Bartkowiak, G., Popenda, Ł., Jurga, S., Schroeder, G.: Synthesis and NMR and mass spectrometric study of ammonioacetohydrazones of formylphenylboronic acids as novel ionic prospective sugar receptors. New J. Chem. 39, 4695–4707 (2015)

    Article  CAS  Google Scholar 

  3. Su, X., Aprahamian, I.: Hydrazone-based switches, metallo-assemblies and sensors. Chem. Soc. Rev. 43, 1963–1981 (2014)

    Article  CAS  Google Scholar 

  4. Suvarapu, L.N., Seo, Y.K., Baek, S.O., Ammireddy, V.R.: Review on analytical and biological applications of hydrazones and their metal complexes. J. Chem. 9, 1288–1304 (2012)

    CAS  Google Scholar 

  5. Dweedar, H.E., Mahrous, H., Ibrahim, H.S., Abdel-Aziz, H.A.: Analogue-based design, synthesis and biological evaluation of 3-substituted-(methylenehydrazono) indolin-2-ones as anticancer agents. Eur. J. Med. Chem. 78, 275–280 (2014)

    Article  CAS  Google Scholar 

  6. Vanucci-Bacque, C., Carayon, C., Bernis, C., Camare, C., Nègre-Salvayre, A., Bedos-Belval, F., Baltas, M.: Synthesis, antioxidant and cytoprotective evaluation of potential antiatherogenic phenolic hydrazones. A structure-activity relationship insight. Bioorgan. Med. Chem. 22, 4269–4276 (2014)

    Article  CAS  Google Scholar 

  7. Rollas, S., Güniz Kücükgüzel, S.: Biological activities of hydrazone derivatives. Molecules 12, 1910–1939 (2007)

    Article  CAS  Google Scholar 

  8. Sinha, R., Singh Sara, U.V., Khosa, R.L., Stables, J., Jain, J.: Nicotinic acid hydrazones: a novel anticonvulsant pharmacophore. Med. Chem. Res. 20, 1499–1504 (2011)

    Article  CAS  Google Scholar 

  9. Khalil, N.A., Ahmed, E.M., Mohamed, K.O., Zaitone, S.A.-B.: Synthesis of new nicotinic acid derivatives and their evaluation as analgesic and anti-inflammatory agents. Chem. Pharm. Bull. 61, 933–940 (2013)

    Article  CAS  Google Scholar 

  10. Hruskova, K., Kovarikova, P., Bendova, P., Haskova, P., Mackova, E., Stariat, J., Vavrova, A., Vavrova, K., Simunek, T.: Synthesis and initial in vitro evaluations of novel antioxidant aroylhydrazone iron chelators with increased stability against plasma hydrolysis. Chem. Res. Toxicol. 24, 290–302 (2011)

    Article  CAS  Google Scholar 

  11. Kovaříková, P., Mrkvičková, Z., Klimeš, J.: Investigation of the stability of aromatic hydrazones in plasma and related biological material. J. Pharm. Biomed. Anal. 47, 360–370 (2008)

    Article  Google Scholar 

  12. Kovaříková, P., Mokrý, M., Klimeš, J., Vávrová, K.: HPLC study on stability of pyridoxal isonicotinoyl hydrazone. J. Pharm. Biomed. Anal. 40, 105–112 (2006)

    Article  Google Scholar 

  13. Kovaříková, P., Klimeš, J., Štěrba, M., Popelová, O., Mokrý, M., Geršl, V., Poňka, P.: Development of high-performance liquid chromatographic determination of salicylaldehyde isonicotinoyl hydrazone in rabbit plasma and application of this method to an in vivo study. J. Sep. Sci. 28, 1300–1306 (2005)

    Article  Google Scholar 

  14. Lees-Gayed, N.J., Abou-Taleb, M.A., El-Bitash, I.A., Iskander, M.F.: Studies on biologically active acylhydrazones. Part 1. Acid–base equilibria and acid hydrolysis of pyridoxal aroylhydrazones and related compounds. J. Chem. Soc. Perkin Trans. 2, 213–217 (1992)

  15. Buss, J.L., Ponka, P.: Hydrolysis of pyridoxal isonicotinoyl hydrazone and its analogs. Biochim. Biophys. Acta 1619, 177–186 (2003)

    Article  CAS  Google Scholar 

  16. Galić, N., Cimerman, Z., Tomišić, V.: Tautomeric and protonation equilibria of Schiff bases of salicylaldehyde with aminopyridines. Anal. Chim. Acta 343, 135–143 (1997)

    Article  Google Scholar 

  17. Galić, N., Cimerman, Z., Tomišić, V.: Spectrometric study of tautomeric and protonation equilibria of o-vanillin Schiff base derivatives and their complexes with Cu(II). Spectrochim. Acta A 71, 1274–1280 (2008)

    Article  Google Scholar 

  18. Galić, N., Perić, B., Kojić-Prodić, B., Cimerman, Z.: Structural and spectroscopic characteristics of aroylhydrazones derived from nicotinic acid hydrazide. J. Mol. Struct. 559, 187–194 (2001)

    Article  Google Scholar 

  19. Galić, N., Dijanošić, A., Kontrec, D., Miljanić, S.: Structural investigation of aroylhydrazones in dimethylsulphoxide/water mixtures. Spectrochim. Acta 95, 347–353 (2012)

    Article  Google Scholar 

  20. Galić, N., Brođanac, I., Kontrec, D., Miljanić, S.: Structural investigations of aroylhydrazones derived from nicotinic acid hydrazide in solid state and in solution. Spectrochim. Acta A 107, 263–270 (2013)

    Article  Google Scholar 

  21. Budimir, A., Benković, T., Tomišić, V., Gojmerac Ivšić, A., Galić, N.: Hydrolysis and extraction properties of aroylhydrazones derived from nicotinic acid hydrazide. J. Solution Chem. 42, 1935–1948 (2013)

    Article  CAS  Google Scholar 

  22. Galić, N., Rubčić, M., Magdić, K., Cindrić, M., Tomišić, V.: Solution and solid-state studies of complexation of transition-metal cations and Al(III) by aroylhydrazones derived from nicotinic acid hydrazide. Inorg. Chim. Acta 366, 98–104 (2011)

    Article  Google Scholar 

  23. Stražić, D., Benković, T., Gembarovski, D., Kontrec, D., Galić, N.: Comprehensive ESI MS and MS/MS analysis of aromatic hydrazones derived from nicotinic acid hydrazide. Int. J. Mass Spectrom. 371, 54–64 (2014)

    Article  Google Scholar 

  24. Bates, R.G.: Determination of pH, Theory and Practice. Wiley, New York (1964)

    Google Scholar 

  25. Gans, P., Sabatini, A., Vacca, A.: Investigation of equilibria in solution. Determination of equilibrium constants with the HYPERQUAD suite of programs. Talanta 43, 1739–1753 (1996)

    Article  CAS  Google Scholar 

  26. Kriss, G. A.: Astronomical data analysis software & systems III. In: Crabtree, D.R., Hanisch, R.J. Barnes, J. (eds.) A.S.P. Conf. Series, vol. 61, p. 437. Astronomical Society of the Pacifc, San Francisco (1994)

  27. Richardson, R., Vitolo, L.M.W., Hefter, G.T., May, P.M., Clare, B.W., Webb, J., Wilairat, P.: Iron chelators of the pyridoxal isonicotinoyl hydrazone class Part I. Ionization characteristics of the ligands and their relevance to biological properties. Inorg. Chim. Acta 170, 165–170 (1990)

    Article  CAS  Google Scholar 

  28. Doungdee, P., Sarel, S., Wongvisetsirikul, N., Avramovici-Grisaru, S.: Iron chelators of the pyridoxal 2-pyridyl hydrazone class. Part 4. pK a values of the chelators and their relevance to biological properties. J. Chem. Soc. Perkin Trans. 2, 319–323 (1995)

  29. Lu, Y.-H., Lu, Y.-W., Wu, C.-L., Shao, Q., Chen, X.-L., Bimbong, R.: UV-visible spectroscopic study of the salicylaldehyde benzoylhydrazone and its cobalt complexes. Spectrochim. Acta A 65, 695–701 (2006)

    Article  Google Scholar 

  30. Habidi-Yangjeh, A., Dunandeh-Jenagharad, M., Nooshyar, M.: Prediction of acidity constant of various benzoic acids and phenols in water using linear and nonlinear QSPR models. Bull. Korean Chem. Soc. 26, 2007–2016 (2005)

    Article  Google Scholar 

  31. Liptak, M.D., Gross, K.C., Seybold, P.G., Feldgus, S., Shields, G.C.: Absolute pK a determinations for substituted phenols. J. Am. Chem. Soc. 124, 6421–6427 (2002)

    Article  CAS  Google Scholar 

  32. Roses, M., Rived, R., Bosch, E.: Dissociation constants of phenols in methanol–water mixtures. J. Chromatogr. A 867, 45–56 (2000)

    Article  CAS  Google Scholar 

  33. Ghasemi, J., Niazi, A., Kubista, M., Elbergali, A.: Spectrophotometric determination of acidity constants of 4-(2-pyridylazo)resorcinol in binary methanol–water mixtures. Anal. Chim. Acta 455, 335–342 (2002)

    Article  CAS  Google Scholar 

  34. Tai, X.-S., Kong, F.Y.: Crystal structure of 2′-hydroxyacetophenone nicotinoylhydrazone monohydrate, C14H15N3O3·H2O. Z. Kristallogr. 221, 341–342 (2006)

    CAS  Google Scholar 

  35. El-Taher, M.A., Gabr, A.A.: Medium effect on acidity constants of some heterocyclic nitrogen azomethines. Talanta 43, 1511–1518 (1996)

    Article  CAS  Google Scholar 

  36. Harnsberger, H.F., Cochran, E.L., Szmant, H.H.: The basicity of hydrazones. J. Am. Chem. Soc. 77, 5048–5050 (1955)

    Article  CAS  Google Scholar 

  37. Gulaboski, R., Bogeski, I., Mirčeski, V., Saul, S., Pasieka, B., Haeri, H.H., Stefova, M., Stanoeva, J.P., Mitrev, S., Hoth, M., Kappl, R.: Hydroxylated derivatives of dimethoxy-1,4-benzoquinone as redox switchable earth-alkaline metal ligands and radical scavengers. Sci. Rep. 3, 1–8 (2013)

    Article  Google Scholar 

  38. Anderson, D.G., Mariappan, S.V.S., Buettner, G.R., Doorn, J.A.: Oxidation of 3,4-dihydroxyphenylacetaldehyde, a toxic dopaminergic metabolite, to a semiquinone radical and an ortho-quinone. J. Biol. Chem. 286, 26978–26986 (2011)

    Article  CAS  Google Scholar 

  39. Pati, S., Crupi, P., Benucci, I., Antonacci, D., Di Luccia, A., Esti, M.: HPLC-DAD-MS/MS characterization of phenolic compounds in white wine stored without added sulfite. Food Res. Int. 66, 2017–2215 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Croatian Science Foundation (project IP-2014-09-4841).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. Budimir or N. Galić.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benković, T., Kontrec, D., Tomišić, V. et al. Acid–Base Properties and Kinetics of Hydrolysis of Aroylhydrazones Derived from Nicotinic Acid Hydrazide. J Solution Chem 45, 1227–1245 (2016). https://doi.org/10.1007/s10953-016-0504-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-016-0504-8

Keywords

Navigation