Skip to main content
Log in

Experimental Determination of the Electronic Polarizability of Quinoline and Isoquinoline in Solution by Three New Strategies

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The values of electronic polarizability of quinoline and isoquinoline in extremely diluted liquid solution are reported in this paper. These were obtained by means of three new strategies based on UV-visible-NIR spectroscopy, the Kramers-Krönig relations, high precision densitometry and high exactitude refractometry, which are called here Arakawa’s Approximation (AA), Optical Substractive Approximation (OSA) and Optical Differential Approximation (ODA). In general the static electronic polarizability values of solute molecules obtained by ODA and OSA are in excellent agreement with the reported theoretical values at the Density Functional Theory (DFT) level and the Atom monopole-dipole model, but strong discrepancies were observed with the experimental values previously reported for quinoline and isoquinoline using refractometric and electro-optic methods. These differences were interpreted and analyzed in terms of dielectric intermolecular forces, resonant and pre-resonant effects. The AA method is shown to fail in predicting the polarizability of the quinoline and isoquinoline molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez-Delgado, R.A., Navarro, M., Perez, H., Urbina, J.A.: Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium- and rhodium-chloroquine complexes. J. Med. Chem. 39, 1095–1099 (1996)

    Article  CAS  Google Scholar 

  2. Navarro, M., Perez, H., Sanchez-Delgado, R.A.: Toward a novel metal-based chemotherapy against tropical diseases. 3. Synthesis and antimalarial activity in vitro and in vivo of the new gold-chloroquine complex [Au(PPh3)(CQ)]PF6. J. Med. Chem. 40, 1937–1939 (1997)

    Article  CAS  Google Scholar 

  3. Suzuki, T., Fukazawa, N., San-nohe, K., Sato, W., Yano, O., Tsuruo, T.: Structure-activity relationship of newly synthesized quinoline derivatives for reversal of multidrug resistance in cancer. J. Mol. Catal. 40(3), 2047–2052 (1997)

    CAS  Google Scholar 

  4. Strekowski, L., Zegrocka, O., Windham, C., Czarny, A.: Practical synthesis of 4-chloro-2-(2-naphthyl)quinoline, a precursor to triple-helix DNA intercalators. Org. Process. Res. Dev. 1(15), 384–386 (1997)

    Article  CAS  Google Scholar 

  5. Santo, M., Cattana, R., Silber, J.: Hydrogen bonding and dipolar interactions between quinolines and organic solvents nuclear magnetic resonance and ultraviolet-visible spectroscopic studies. Spectrochim. Acta A 57, 1541–1553 (2001)

    Article  CAS  Google Scholar 

  6. Soscún, H., Alvarado, Y., Hernández, J., Hernández, P., Atencio, R., Hinchliffe, A.: Experimental and theoretical determination of the dipole polarizability of dibenzothiophene. J. Phys. Org. Chem. 14(10), 709–715 (2001)

    Article  Google Scholar 

  7. Alvarado, Y., Cubillán, N., Labarca, H.P., Karam, A., Arrieta, F., Castellano, O., Soscún, H.: Static and dynamic dipole polarizabilities of 2- and 3-methylthiophenes in solution: experimental and theoretical determination. J. Phys. Org. Chem. 15, 154–164 (2002)

    Article  CAS  Google Scholar 

  8. Alvarado, Y.J., Soscún, H., Velazco, W., Labarca, H.P., Cubillán, N., Hernández, J.: Dipole polarizability of the pyrazabole molecule in solution. J. Phys. Org. Chem. 15, 835–843 (2002)

    Article  CAS  Google Scholar 

  9. Alvarado, Y.J., Labarca, H.P., Cubillán, N., Osorio, E., Karam, A.: Solvent effect on the electronic polarizability of benzonitrile. Z. Naturforsch. 58a, 68–74 (2003)

    Google Scholar 

  10. Bonin, K., Kresin, V.: Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters. World Scientific, Great Britain (1997)

    Google Scholar 

  11. Soscún, H., Hernández, J., Escobar, R., Toro-Mendoza, C., Alvarado, Y., Hinchliffe, A.: Ab initio and density functional theory calculations of the dipole polarizability and the second hyperpolarizability of benzene. Int. J. Quantum Chem. 90, 497–506 (2002)

    Article  Google Scholar 

  12. Gussoni, M., Rui, M., Zerbi, G.: Electronic and relaxation contribution to linear molecular polarizability. J. Mol. Struct. 447, 163–215 (1998)

    Article  CAS  Google Scholar 

  13. Doerksen, R., Thakkar, A.: Polarizabilities of heteroaromatic molecules: Azines revisited. Int. J. Quantum Chem. 30, 421–430 (1996)

    Google Scholar 

  14. Hinchliffe, A., Soscún, H.: Density functional studies of molecular polarizabilities part 9; quinoline and isoquinoline. Asian J. Spectrosc. 4, 21–27 (2000)

    CAS  Google Scholar 

  15. Waite, J., Papadopoulos, M.G.: Dependence of the polarizability, α, and hyperpolarozability, β and γ, of a series of nitrogen heterocyclics on their molecular structure. A comparative study. J. Phys. Chem. 94, 1755–1758 (1990)

    Article  CAS  Google Scholar 

  16. Shanker, B., Applequist, J.: Polarizabilities of nitrogen heterocyclic molecules from atom monopole-dipole interaction theory. J. Phys. Chem. 100, 3879–3881 (1996)

    Article  CAS  Google Scholar 

  17. Miller, K.: Additivity methods in molecular polarizability. J. Am. Chem. Soc. 112, 8533–8542 (1990)

    Article  CAS  Google Scholar 

  18. Miller, K.: Calculation of the molecular polarizability tensor. J. Am. Chem. Soc. 112, 8543–8551 (1990)

    Article  CAS  Google Scholar 

  19. Le Fèvre, C., Le Fèvre, R.: Molecular polarisability. Electro-optical polarizability tensor ellipsoids for pyridine, quinoline and isoquinoline. J. Chem. Soc. B, 2750–2753 (1955)

  20. Le Fèvre, C., Le Fèvre, R., Purnachandra, R., Smith, R.: Molecular polarisability. J. Chem. Soc. B, 1188–1192 (1959)

  21. Singer, K., Garito, A.: Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation. J. Chem. Phys. 75(7), 3572–3580 (1981)

    Article  CAS  Google Scholar 

  22. Bertie, J., Jones, R.N., Keefe, C.D.: Infrared intensities of liquids XII: accurate optical constants and molar absorption coefficients between 6225 and 500 cm−1 of benzene at 25 °C, from spectra recorded in several laboratories. Appl. Spectrosc. 47(7), 891–911 (1995)

    Article  Google Scholar 

  23. Bertie, J., Zhang, S.L., Keefe, C.D.: Infrared intensities of liquids XVI. Accurate determination of molecular band intensities from infrared refractive index and dielectric constant spectra. J. Mol. Struct. 324(1–2), 157–176 (1995)

    Google Scholar 

  24. Bertie, J., Zhang, S.L., Keefe, C.D.: Measurements and use of absolute infrared absorption intensities of neat liquids. Vib. Spectrosc. 8(2), 215–229 (1995)

    Article  CAS  Google Scholar 

  25. Hohm, U., Goebel, D., Grimme, S.: Experimental and theoretical study of the dipole polarizability of ferrocene Fe(C5H5)2. Chem. Phys. Lett. 272, 328–334 (1997)

    Article  CAS  Google Scholar 

  26. Peiponen, K., Varianen, E., Asakura, T.: Dispersion, Complex Analysis and Optical Spectroscopy, Springer Tracts in Modern Physics, vol. 147. Springer, Berlin (1999)

    Google Scholar 

  27. Goebel, D., Hohm, U.: Comparative study of the dipole polarizability of the metallocenes Fe(C5H5)2, Ru(C5H5)2 and Os(C5H5)2. J. Chem. Soc., Faraday Trans. 93(19), 3467–3472 (1997)

    Article  CAS  Google Scholar 

  28. Bertie, J., Apelblat, Y., Keefe, C.: Infrared intensities of liquids. Part XXIII. Infrared optical constants and integrated intensities of liquid benzene-d 1 at 25 °C. J. Mol. Struct. 550–551, 135–165 (2000)

    Article  Google Scholar 

  29. Bertie, J., Keefe, C.: Infrared intensities of liquids xxii: Optical and dielectric constants, molar polarizabilities, and integrated intensities of liquid benzene-d 6 at 25 °C between 5000 and 450 cm−1. Frescenius J. Anal. Chem. 362, 91–108 (1998)

    Article  CAS  Google Scholar 

  30. Bertie, J., Michaelian, K.: Comparison of Infrared and Raman wave numbers of neat molecular liquids: Which is the correct infrared wave number to use. J. Chem. Phys. 109(16), 6764–6771 (1998)

    Article  CAS  Google Scholar 

  31. Albella, M., Martínez, J.: Física de Dieléctricos. Aplicación a los Materiales y Dispositivos Electrónicos. Marcombo S. A., España (1984)

    Google Scholar 

  32. Arakawa, E., Tuminello, P., Khare, B., Milham, M.: Optical properties of horseradish peroxidase from 0.13 to 2.5 μm. Biospectroscopy 3, 73–80 (1997)

    Article  CAS  Google Scholar 

  33. Inagaki, T., Hamm, R., Arakawa, E., Painter, L.: Optical and dielectric properties of dna in the extreme ultraviolet. J. Chem. Phys. 61(10), 4246–4250 (1974)

    Article  CAS  Google Scholar 

  34. Khare, B.N., Sagan, C., Arakawa, E.T., Suits, F., Callcott, T.A., Williams, M.W.: Optical constants of organic tholins produced in a simulated titanian atmosphere: From soft x-ray to microwave frequencies. Icarus 60, 127–137 (1984)

    Article  CAS  Google Scholar 

  35. Komura, A., Uchida, M., Yagi, J., Higuchi, J.: Electron spin resonance and phosphorescence of quinoline, isoquinoline and their protonated cations in the phosphorescent triplet states. J. Photochem. Photobiol. 42A(2–3), 293–300 (1988)

    Article  Google Scholar 

  36. Riddick, J., Bunger, W., Sakano, T.: Organic Solvents: Physical Properties and Methods of Purification. Wiley-Interscience, USA (1986)

    Google Scholar 

  37. Suppan, P., Ghoneim, N.: Solvatochromism. The Royal Society of Chemistry, Great Britain (1997)

    Google Scholar 

  38. McRae, R., Williams, M., Arakawa, E.: Optical properties of some aromatic liquids in the vacuum ultraviolet. J. Chem. Phys. 61(3), 861–865 (1974)

    Article  Google Scholar 

  39. Sowers, B., Arakawa, E., Birkhoff, R.: Optical properties of six-membered carbon ring organic liquids in the vacuum ultraviolet. J. Chem. Phys. 54(6), 2319–2324 (1971)

    Article  CAS  Google Scholar 

  40. Goplen, T.G., Cameron, D.G., Jones, R.N.: The control of errors in infrared spectrophotometry. vi. The evaluation of optical constants by combined transmission and attenuated total reflection measurements. Appl. Spectrosc. 34(6), 652–656 (1980)

    Article  CAS  Google Scholar 

  41. Keefe, C.: Curvefitting imaginary components of optical properties: Restrictions on the lineshape due to causality. J. Mol. Spectrosc. 205, 261–268 (2001)

    Article  CAS  Google Scholar 

  42. Alvarado, Y.J., Labarca, H.P., Cubillán, N., Caldera, J., Leal, M., González, G., Karam, A.: Solvation of dibenzothiophene 5,5-dioxide in binary solvent mixtures. Multiciencia 4, 81–90 (2005)

    Google Scholar 

  43. Heitz, S., Weidauer, D., Rosenhow, B., Hesse, A.: Measurements of static polarizabilities of C10H8 and C10D8. J. Chem. Phys. 96, 976–981 (1992)

    Article  CAS  Google Scholar 

  44. Calaminici, P., Jug, K., Köster, A., Ingamells, V.E., Papadopoulos, M.G.: Polarizabilities of azabenzenes. J. Chem. Phys. 112(14), 6301–6308 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ysaías J. Alvarado.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarado, Y.J., Cubillán, N., Leal, M.G. et al. Experimental Determination of the Electronic Polarizability of Quinoline and Isoquinoline in Solution by Three New Strategies. J Solution Chem 36, 1139–1155 (2007). https://doi.org/10.1007/s10953-007-9171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-007-9171-0

Keywords

Navigation