Skip to main content
Log in

Physiologically-based pharmacokinetic model for 2,4-dinitrophenol

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

New approaches in drug development are needed to address the growing epidemic of obesity as the prevalence of obesity increases worldwide. 2,4-Dinitrophenol (DNP) is an oxidative phosphorylation uncoupling agent that was widely used in the early 1930s for weight loss but was quickly banned by the FDA due to the severe toxicities associated with the compound. One of the limitations leading to the demise of DNP as a pharmaceutical was a lack of understanding about the pharmacokinetic–pharmacodynamic relationship. The purpose of this study was to investigate whole body disposition of DNP in order to understand the relationship between the pharmacokinetics, efficacy and toxicity in the C57BL/6J diet induced obese mouse model. Following intravenous administration of 1 mg/kg, and intraperitoneal administration of 5 mg/kg and 15 mg/kg of DNP, we found limited DNP distribution to tissues. Experimentally measured partition coefficients were found to be less than 1 for all analyzed tissues. In addition, DNP exhibits significant nonlinear pharmacokinetics, which we have attributed to nonlinear plasma protein binding and nonlinear partitioning into liver and kidney. By enhancing our understanding of the PK–PD relationship, we can develop new approaches to leverage oxidative phosphorylation uncoupling as a weight loss strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DNP:

2,4-Dinitrophenol

PK:

Pharmacokinetics

PD:

Pharmacodynamics

PBPK:

Physiologically based, pharmacokinetics

TD:

Toxicodynamics

DIO:

Diet induced obese

IV:

Intravenous

IP:

Intraperitoneal

LC–MS/MS:

Liquid chromatography–mass spectrometry

References

  1. Khan SS, Ning H, Wilkins JT, Allen N, Carnethon M, Berry JD, Sweis RN, Lloyd-Jones DM (2018) Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol 3(4):280–287. https://doi.org/10.1001/jamacardio.2018.0022

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anderson JW, Konz EC, Frederich RC, Wood CL (2001) Long-term weight-loss maintenance: a meta-analysis of US studies. Am J Clin Nutr 74(5):579–584. https://doi.org/10.1093/ajcn/74.5.579

    Article  CAS  PubMed  Google Scholar 

  3. Araujo JR, Martel F (2012) Sibutramine effects on central mechanisms regulating energy homeostasis. Curr Neuropharmacol 10(1):49–52. https://doi.org/10.2174/157015912799362788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cutting WC, Mehrtens HG, Tainter ML (1933) Actions and uses of dinitrophenol: promising metabolic applications. J Am Med Assoc 101(3):193–195. https://doi.org/10.1001/jama.1933.02740280013006

    Article  CAS  Google Scholar 

  5. Tainter ML (1934) Low oxygen tensions and temperatures on the actions and toxicity of dinitrophenol. J Pharmacol Exp Ther 51(1):45–58

    CAS  Google Scholar 

  6. Grundlingh J, Dargan PI, El-Zanfaly M, Wood DM (2011) 2,4-Dinitrophenol (DNP): a weight loss agent with significant acute toxicity and risk of death. J Med Toxicol 7(3):205–212. https://doi.org/10.1007/s13181-011-0162-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Caldeira da Silva CC, Cerqueira FM, Barbosa LF, Medeiros MH, Kowaltowski AJ (2008) Mild mitochondrial uncoupling in mice affects energy metabolism, redox balance and longevity. Aging Cell 7(4):552–560. https://doi.org/10.1111/j.1474-9726.2008.00407.x

    Article  CAS  PubMed  Google Scholar 

  8. Perry RJ, Kim T, Zhang XM, Lee HY, Pesta D, Popov VB, Zhang D, Rahimi Y, Jurczak MJ, Cline GW, Spiegel DA (2013) Reversal of hypertriglyceridemia, fatty liver disease, and insulin resistance by a liver-targeted mitochondrial uncoupler. Cell Metab 18(5):740–748. https://doi.org/10.1016/j.cmet.2013.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI (2015) Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 347(6227):1253–1256. https://doi.org/10.1126/science.aaa0672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goldgof M, Xiao C, Chanturiya T, Jou W, Gavrilova O, Reitman ML (2014) The chemical uncoupler 2,4-Dinitrophenol (DNP) protects against diet-induced obesity and improves energy homeostasis in mice at thermoneutrality. J Biol Chem 289(28):19341–19350. https://doi.org/10.1074/jbc.M114.568204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Holborow A, Purnell RM, Wong JF (2016) Beware the yellow slimming pill: fatal 2,4-dinitrophenol overdose. BMJ Case Rep. https://doi.org/10.1136/bcr-2016-214689

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lawford DJ, King E, Harvey DG (1954) On the metabolism of some aromatic nitro-compounds by different species of animal. II. The elimination of various nitro-compounds from the blood of different species of animal. J Pharm Pharmacol 6(9):619

    CAS  PubMed  Google Scholar 

  13. Sweeney LM, Goodwin MR, Hulgan AD, Gut CP Jr, Bannon DI (2015) Toxicokinetic model development for the insensitive munitions component 2,4-dinitroanisole. Int J Toxicol 34(5):417–432. https://doi.org/10.1177/1091581815594623

    Article  CAS  PubMed  Google Scholar 

  14. Politi L, Vignali C, Polettini A (2007) LC-MS-MS analysis of 2,4-dinitrophenol and its phase I and II metabolites in a case of fatal poisoning. J Anal Toxicol 31(1):55–61

    Article  CAS  PubMed  Google Scholar 

  15. Eiseman JL, Gehring PJ, Gibson JE (1972) The in vitro metabolism of 2,4-dinitrophenol by rat liver homogenates. Toxicol Appl Pharmacol 21(2):275–285

    Article  CAS  PubMed  Google Scholar 

  16. Brown RP, Delp MD, Lindstedt SL, Rhomberg LR, Beliles RP (1997) Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13(4):407–484. https://doi.org/10.1177/074823379701300401

    Article  CAS  PubMed  Google Scholar 

  17. D’Argenio DZ, Wang A (2009) ADAPT 5 User’s guide: pharmacokinetic/pharmacodynamic systems analysis software, biomedical simulations resource, Los Angles

  18. Gabrielsson J, Dolgos H, Gillberg PG, Bredberg U, Benthem B, Duker G (2009) Early integration of pharmacokinetic and dynamic reasoning is essential for optimal development of lead compounds: strategic considerations. Drug Discov Today 14(7–8):358–372. https://doi.org/10.1016/j.drudis.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  19. Wagner J (1971) A new generalized nonlinear pharmacokinetic model and its implications. Biopharm Relevant Pharmacokinet 302–317

  20. Robert TA, Hagardorn AN (1983) Analysis and kinetics of 2,4-dinitrophenol tissues by capillary gas chromatography-mass spectrometry. J Chromatogr B 276:77–84. https://doi.org/10.1016/S0378-4347(00)85067-7

    Article  CAS  Google Scholar 

  21. Mager DE, Krzyzanski W (2005) Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res 22(10):1589–1596. https://doi.org/10.1007/s11095-005-6650-0

    Article  CAS  PubMed  Google Scholar 

  22. Administration FaD (2018) FDA guidance: bioanalytical method validation guidance for industry

  23. Peletier LA, Gabrielsson J (2012) Dynamics of target-mediated drug disposition: characteristic profiles and parameter identification. J Pharmacokinet Pharmacodyn 39(5):429–451. https://doi.org/10.1007/s10928-012-9260-6

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gehring PJ, Buerge JF (1969) The distribution of 2,4-dinitrophenol relative to its cataractogenic activity in ducklings and rabbits. Toxicol Appl Pharmacol 15(3):574–592

    Article  CAS  PubMed  Google Scholar 

  25. Zack F, Blaas V, Goos C, Rentsch D, Buttner A (2016) Death within 44 days of 2,4-dinitrophenol intake. Int J Legal Med 130(5):1237–1241. https://doi.org/10.1007/s00414-016-1378-4

    Article  PubMed  Google Scholar 

  26. Spycher S, Smejtek P, Netzeva TI, Escher BI (2008) Toward a class-independent quantitative structure–activity relationship model for uncouplers of oxidative phosphorylation. Chem Res Toxicol 21(4):911–927. https://doi.org/10.1021/tx700391f

    Article  CAS  PubMed  Google Scholar 

  27. Power A, Pearson N, Pham T, Cheung C, Phillips A, Hickey A (2014) Uncoupling of oxidative phosphorylation and ATP synthase reversal within the hyperthermic heart. Physiol Rep 2(9):e12138. https://doi.org/10.14814/phy2.12138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Berndt WO, Grote D (1968) The accumulation of C14-dinitrophenol by slices of rabbit kidney cortex. J Pharmacol Exp Ther 164(1):223–231

    CAS  PubMed  Google Scholar 

  29. Mudge GH, Taggart JV (1950) Effect of 2,4-dinitrophenol on renal transport mechanisms in the dog. Am J Physiol 161(1):173–180. https://doi.org/10.1152/ajplegacy.1950.161.1.173

    Article  CAS  PubMed  Google Scholar 

  30. Shah DK, Betts AM (2012) Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J Pharmacokinet Pharmacodyn 39(1):67–86. https://doi.org/10.1007/s10928-011-9232-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH Grant GM114179 and AI138195 to D.K.S. and the Centre for Protein Therapeutics at University at Buffalo. L.F.M would like to acknowledge Donald F. and Edna G. Bishop Scholarship Foundation for their continued support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhaval K. Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meyer, L.F., Rajadhyaksha, P.M. & Shah, D.K. Physiologically-based pharmacokinetic model for 2,4-dinitrophenol. J Pharmacokinet Pharmacodyn 49, 325–336 (2022). https://doi.org/10.1007/s10928-022-09806-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-022-09806-y

Keywords

Navigation