Skip to main content

Advertisement

Log in

A population pharmacokinetic model for the complex systemic absorption of ropivacaine after femoral nerve block in patients undergoing knee surgery

  • Original Paper
  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Because of its slow systemic absorption and flip-flop kinetics, ropivacaine’s pharmacokinetics after a peripheral nerve block has never been thoroughly characterized. The purpose of this study was to develop a population pharmacokinetic model for ropivacaine after loco-regional administration and to identify patient characteristics that may influence the drug’s absorption and disposition. Frequent plasma samples were taken up to 93 h after a 100 mg dose given as femoral block for postoperative analgesia in 15 orthopedic patients. Ropivacaine plasma concentration–time data were analyzed using a nonlinear mixed effects modeling method. A one-compartment model with parallel inverse Gaussian and time-dependent inputs best described ropivacaine plasma concentration–time curves. Ropivacaine systemic absorption was characterized by a rapid phase (mean absorption time of 25 ± 4.8 min) followed by a much slower phase (half-life of 3.9 ± 0.65 h). Interindividual variability (IIV) for these parameters, 58 and 9 %, indicated that the initial absorption phase was more variable. The apparent volume of distribution (V/F = 77.2 ± 11.5 L, IIV = 26 %) was influenced by body weight (Δ 1.49 % per kg change) whereas the absorption rate constant (slower phase) of ropivacaine was affected by age (Δ 2.25 % per year change). No covariate effects were identified for the apparent clearance of the drug (CL/F =10.8 ± 1.0 L/h, 34  IIV = 34 %). These findings support our hypothesis that modeling a complex systemic absorption directly from plasma concentration–time curves exhibiting flip-flop kinetics is possible. Only the age-effect was considered as relevant for possible dosing adjustments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cousins M, Bridenbaugh P, Carr D, Horlocker T (2009) Properties, absorption and disposition of local anesthetic agents. In: Mather L, Tucker G (eds) Neural blockade in clinical anesthesia and pain medicine, 4th edn. Lippincott Williams & Wilkins, New York, pp 48–96

    Google Scholar 

  2. Tucker GT, Mather LE (1975) Pharmacology of local anaesthetic agents. Pharmacokinetics of local anaesthetic agents. Br J Anaesth 47(Suppl): 213–224

    Google Scholar 

  3. Burm AG, Vermeulen NP, Van Kleef JW, De Boer AG, Spierdijk J, Breimer DD (1987) Pharmacokinetics of lignocaine and bupivacaine in surgical patients following epidural administration. Simultaneous investigation of absorption and disposition kinetics using stable isotopes. Clin Pharmacokinet 13:191–203

    Article  PubMed  CAS  Google Scholar 

  4. Burm AG, Van Kleef JW, Vermeulen NP, Olthof G, Breimer DD, Spierdijk J (1988) Pharmacokinetics of lidocaine and bupivacaine following subarachnoid administration in surgical patients: simultaneous investigation of absorption and disposition kinetics using stable isotopes. Anesthesiology 69:584–592

    Article  PubMed  CAS  Google Scholar 

  5. Karmakar MK, Ho AM, Law BK, Wong AS, Shafer SL, Gin T (2005) Arterial and venous pharmacokinetics of ropivacaine with and without epinephrine after thoracic paravertebral block. Anesthesiology 103:704–711

    Article  PubMed  CAS  Google Scholar 

  6. Zhang J, Zhou W, Jiao Z, Qin W, Xu J, Liang W, Shi X (2011) The pharmacokinetics of ropivacaine in elderly patients undergoing nerve stimulator-guided thoracic paravertebral block. J Cardiothorac Vasc Anesth 25:592–593

    Article  PubMed  Google Scholar 

  7. Cuvillon P, Nouvellon E, Ripart J, Boyer JC, Dehour L, Mahamat A, L’hermite J, Boisson C, Vialles N, Lefrant JY, De La Coussaye JE (2009) A comparison of the pharmacodynamics and pharmacokinetics of bupivacaine, ropivacaine (with epinephrine) and their equal volume mixtures with lidocaine used for femoral and sciatic nerve blocks: a double-blind randomized study. Anesth Analg 108:641–649

    Article  PubMed  CAS  Google Scholar 

  8. Rettig HC, Lerou JG, Gielen MJ, Boersma E, Burm AG (2007) The pharmacokinetics of ropivacaine after four different techniques of brachial plexus blockade. Anaesthesia 62:1008–1014

    Article  PubMed  CAS  Google Scholar 

  9. Vanterpool S, Steele SM, Nielsen KC, Tucker M, Klein SM (2006) Combined lumbar-plexus and sciatic-nerve blocks: an analysis of plasma ropivacaine concentrations. Reg Anesth Pain Med 31:417–421

    PubMed  CAS  Google Scholar 

  10. Xiao J, Cai MH, Wang XR, He P (2010) Time course of action and pharmacokinetics of ropivacaine in adult and elderly patients following combined lumbar plexus–sciatic nerve block. Int J Clin Pharmacol Ther 48:608–613

    PubMed  CAS  Google Scholar 

  11. Wulf H, Lowe J, Gnutzmann KH, Steinfeldt T (2010) Femoral nerve block with ropivacaine or bupivacaine in day case anterior crucial ligament reconstruction. Acta Anaesthesiol Scand 54:414–420

    Article  PubMed  CAS  Google Scholar 

  12. Snoeck MM, Vree TB, Gielen MJ, Lagerwert AJ (2003) Steady state bupivacaine plasma concentrations and safety of a femoral “3-in-1” nerve block with bupivacaine in patients over 80 years of age. Int J Clin Pharmacol Ther 41:107–113

    PubMed  CAS  Google Scholar 

  13. Gaudreault F, Drolet P, Varin F (2009) High-performance liquid chromatography using UV detection for the simultaneous quantification of ropivacaine and bupivacaine in human plasma. Ther Drug Monit 31:753–757

    PubMed  CAS  Google Scholar 

  14. Beal S, Sheiner LB, Boeckmann A, Bauer RJ (1989–2009) NONMEM User’s guides. Icon Development Solutions, Ellicott City, MD, USA

  15. Vaughan DP, Dennis M (1980) Mathematical basis and generalization of the Loo-Riegelman method for the determination of in vivo drug absorption. J Pharmacokinet Biopharm 8:83–98

    PubMed  CAS  Google Scholar 

  16. Simon MJ, Veering BT, Vletter AA, Stienstra R, Van Kleef JW, Burm AG (2006) The effect of age on the systemic absorption and systemic disposition of ropivacaine after epidural administration. Anesth Analg 102:276–282

    Article  PubMed  CAS  Google Scholar 

  17. Karlsson MO, Savic RM (2007) Diagnosing model diagnostics. Clin Pharmacol Ther 82:17–20

    Article  PubMed  CAS  Google Scholar 

  18. Ludden TM, Beal SL, Sheiner LB (1994) Comparison of the Akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm 22:431–445

    PubMed  CAS  Google Scholar 

  19. Csajka C, Drover D, Verotta D (2005) The use of a sum of inverse Gaussian functions to describe the absorption profile of drugs exhibiting complex absorption. Pharm Res 22:1227–1235

    Article  PubMed  CAS  Google Scholar 

  20. Weiss M, Stedtler C, Roberts MS (1997) On the validity of the dispersion model of hepatic drug elimination when intravascular transit time densities are long-tailed. Bull Math Biol 59:911–929

    Article  PubMed  CAS  Google Scholar 

  21. Burm AG (1989) Clinical pharmacokinetics of epidural and spinal anaesthesia. Clin Pharmacokinet 16:283–311

    Article  PubMed  CAS  Google Scholar 

  22. Wei Liu P, Noertersheuser P, Awni W, Dutta S (2009) Time-dependent, dual first and zero-order absorption model for characterizing the delayed absorption profile in subjects with acute pain. In: the American conference on pharmacometrics poster session. http://2009.go-acop.org/acop2009/posters. Accessed 23 May 2012

  23. Fulling PD, Peterfreund RA (2000) Alkalinization and precipitation characteristics of 0.2 % ropivacaine. Reg Anesth Pain Med 25:518–521

    PubMed  CAS  Google Scholar 

  24. Veering BT, Burm AG, Vletter AA, Van Den Hoeven RA, Spierdijk J (1991) The effect of age on systemic absorption and systemic disposition of bupivacaine after subarachnoid administration. Anesthesiology 74:250–257

    Article  PubMed  CAS  Google Scholar 

  25. Tsui BC, Wagner A, Finucane B (2004) Regional anaesthesia in the elderly: a clinical guide. Drugs Aging 21:895–910

    Article  PubMed  Google Scholar 

  26. Moore DC, Mather LE, Bridenbaugh LD, Balfour RI, Lysons DF, Horton WG (1976) Arterial and venous plasma levels of bupivacaine following peripheral nerve blocks. Anesth Analg 55:763–768

    PubMed  CAS  Google Scholar 

  27. Scott DB, Jebson PJ, Braid DP, Ortengren B, Frisch P (1972) Factors affecting plasma levels of lignocaine and prilocaine. Br J Anaesth 44:1040–1049

    Article  PubMed  CAS  Google Scholar 

  28. Mather LE (2010) The acute toxicity of local anesthetics. Expert Opin Drug Metab Toxicol 6:1313–1332

    Article  PubMed  CAS  Google Scholar 

  29. Aarons L, Sadler B, Pitsiu M, Sjovall J, Henriksson J, Molnar V (2011) Population pharmacokinetic analysis of ropivacaine and its metabolite 2′,6′-pipecoloxylidide from pooled data in neonates, infants, and children. Br J Anaesth 107:409–424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes for Heath Research (MOP-84519) and by the Fonds de la Recherche en Santé du Québec (F. Gaudreault’s studentship). The authors are grateful to Johanne Couture from Université de Montréal and Nadia Godin from Hôpital Maisonneuve-Rosemont for their technical support. The authors would like to recognize the contributions of Jun Li at Université de Montréal and John Clements at Merck during model development. We also want to thank Dr. Louis-Philippe Fortier, Dr. Issam Tanoubi and Dr. Bruno Petit at Hôpital Maisonneuve-Rosemont for their precious collaboration in the clinical part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to France Varin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaudreault, F., Drolet, P., Fallaha, M. et al. A population pharmacokinetic model for the complex systemic absorption of ropivacaine after femoral nerve block in patients undergoing knee surgery. J Pharmacokinet Pharmacodyn 39, 635–642 (2012). https://doi.org/10.1007/s10928-012-9275-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-012-9275-z

Keywords

Navigation