Skip to main content
Log in

Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The bioactive packaging polyvinyl alcohol PVA/starch (PSt) films were prepared by incorporating green synthesized silver nanoparticles (AgNPs). The effect of oregano essential oil (OEO) content on the green synthesis of AgNPs in PSt film was studied. The PSt-AgNPs containing 5 wt% OEO showed minimum inhibitory concentration against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). A synergistic effect on antibacterial activity with PSt incorporated AgNPs and OEO was achieved. The use of OEO content in this work was the lowest when compared to other bioactive containing OEO. The improvements of water resistance were also observed. The tensile strength and tensile modulus of film increased 80.9% and 88.6%, respectively. The releases of silver ion of PSt-AgNPs containing 5 wt% OEO in different foods were 9.31% for deionized water, 7.48% for ethanol and 24.51% for acetic acid. These values were lower than the requirements of European Standard EN 1186-1:2002. The incorporation of green synthesized AgNPs using OEO and PSt thus improved the bioactive nanocomposite film performance for food packaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jasiūnas L, McKenna ST, Bridžiuvienė D, Miknius L (2020) Mechanical, thermal properties and stability of rigid polyurethane foams produced with crude-glycerol derived biomass biopolyols. J Polym Environ 28:1378–1389. https://doi.org/10.1007/s10924-020-01686-y

    Article  CAS  Google Scholar 

  2. Ketkaew S, Kasemsiri P, Hiziroglu S et al (2018) Effect of oregano essential oil content on properties of green biocomposites based on cassava starch and sugarcane bagasse for bioactive packaging. J Polym Environ 26:311–318. https://doi.org/10.1007/s10924-017-0957-x

    Article  CAS  Google Scholar 

  3. Chantawee K, Riyajan SA (2019) Effect of glycerol on the physical properties of carboxylated styrene-butadiene rubber/cassava starch blend films. J Polym Environ 27:50–60. https://doi.org/10.1007/s10924-018-1322-4

    Article  CAS  Google Scholar 

  4. Chen X, Cui F, Zi H et al (2019) Development and characterization of a hydroxypropyl starch/zein bilayer edible film. Int J Biol Macromol 141:1175–1182. https://doi.org/10.1016/j.ijbiomac.2019.08.240

    Article  CAS  PubMed  Google Scholar 

  5. Kumar SV, George J, Sajeevkumar VA (2018) PVA based ternary nanocomposites with enhanced properties prepared by using a combination of rice starch nanocrystals and silver nanoparticles. J Polym Environ 26:3117–3127. https://doi.org/10.1007/s10924-018-1200-0

    Article  CAS  Google Scholar 

  6. da Rosa GS, Vanga SK, Gariepy Y, Raghavan V (2020) Development of biodegradable films with improved antioxidant properties based on the addition of carrageenan containing olive leaf extract for food packaging applications. J Polym Environ 28:123–130. https://doi.org/10.1007/s10924-019-01589-7

    Article  CAS  Google Scholar 

  7. Lin D, Wu Z, Huang Y et al (2020) Physical, mechanical, structural and antibacterial properties of polyvinyl alcohol/oregano oil/graphene oxide composite films. J Polym Environ 28:638–646. https://doi.org/10.1007/s10924-019-01627-4

    Article  CAS  Google Scholar 

  8. Hosseini SF, Rezaei M, Zandi M, Farahmandghavi F (2015) Bio-based composite edible films containing Origanum vulgare L. essential oil. Ind Crops Prod 67:403–413. https://doi.org/10.1016/j.indcrop.2015.01.062

    Article  CAS  Google Scholar 

  9. Trongchuen K, Ounkaew A, Kasemsiri P et al (2018) Bioactive starch foam composite enriched with natural antioxidants from spent coffee ground and essential oil. Starch 70:1–9. https://doi.org/10.1002/star.201700238

    Article  CAS  Google Scholar 

  10. Li J, Ye F, Lei L, Zhao G (2018) Combined effects of octenylsuccination and oregano essential oil on sweet potato starch films with an emphasis on water resistance. Int J Biol Macromol 115:547–553. https://doi.org/10.1016/j.ijbiomac.2018.04.093

    Article  CAS  PubMed  Google Scholar 

  11. Liu Q, Wang W, Qi J et al (2019) Oregano essential oil loaded soybean polysaccharide films: effect of Pickering type immobilization on physical and antimicrobial properties. Food Hydrocoll 87:165–172

    Article  CAS  Google Scholar 

  12. Davachi SM, Heidari BS, Sahraeian R, Abbaspourrad A (2019) The effect of nanoperlite and its silane treatment on the crystallinity, rheological, optical, and surface properties of polypropylene/nanoperlite nanocomposite films. Composites B 175:107088. https://doi.org/10.1016/j.compositesb.2019.107088

    Article  CAS  Google Scholar 

  13. Singh SP, Bhargava DCS, Dubey DV et al (2017) Silver nanoparticles: biomedical applications, toxicity, and safety issues. Int J Res Pharm Pharm Sci 2:01–10

    CAS  Google Scholar 

  14. Kolya H, Kuila T, Kim NH, Lee JH (2019) Bioinspired silver nanoparticles/reduced graphene oxide nanocomposites for catalytic reduction of 4-nitrophenol, organic dyes and act as energy storage electrode material. Composites B 173:106924. https://doi.org/10.1016/j.compositesb.2019.106924

    Article  CAS  Google Scholar 

  15. AbuDalo MA, Al-Mheidat IR, Al-Shurafat AW et al (2019) Synthesis of silver nanoparticles using a modified Tollens’ method in conjunction with phytochemicals and assessment of their antimicrobial activity. Peer J 2019:1–20. https://doi.org/10.7717/peerj.6413

    Article  CAS  Google Scholar 

  16. Priya B, Gupta VK, Pathania D, Singha AS (2014) Synthesis, characterization and antibacterial activity of biodegradable starch/PVA composite films reinforced with cellulosic fibre. Carbohydr Polym 109:171–179. https://doi.org/10.1016/j.carbpol.2014.03.044

    Article  CAS  PubMed  Google Scholar 

  17. Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly(vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599. https://doi.org/10.1016/j.carbpol.2016.08.026

    Article  CAS  PubMed  Google Scholar 

  18. Gao H, Yang H, Wang C (2017) Controllable preparation and mechanism of nano-silver mediated by the microemulsion system of the clove oil. Results Phys 7:3130–3136. https://doi.org/10.1016/j.rinp.2017.08.032

    Article  Google Scholar 

  19. Scandorieiro S, de Camargo LC, Lancheros CAC et al (2016) Synergistic and additive effect of oregano essential oil and biological silver nanoparticles against multidrug-resistant bacterial strains. Front Microbiol 7:1–14. https://doi.org/10.3389/fmicb.2016.00760

    Article  Google Scholar 

  20. Gefen O, Chekol B, Strahilevitz J, Balaban NQ (2017) TDtest: easy detection of bacterial tolerance and persistence in clinical isolates by a modified disk-diffusion assay. Sci Rep 7:1–9. https://doi.org/10.1038/srep41284

    Article  CAS  Google Scholar 

  21. Grkovic M, Stojanovic DB, Pavlovic VB et al (2017) Improvement of mechanical properties and antibacterial activity of crosslinked electrospun chitosan/poly (ethylene oxide) nanofibers. Composites B 121:58–67. https://doi.org/10.1016/j.compositesb.2017.03.024

    Article  CAS  Google Scholar 

  22. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  23. Ounkaew A, Kasemsiri P, Kamwilaisak K et al (2018) Polyvinyl alcohol (PVA)/starch bioactive packaging film enriched with antioxidants from spent coffee ground and citric acid. J Polym Environ 26:3762–3772. https://doi.org/10.1007/s10924-018-1254-z

    Article  CAS  Google Scholar 

  24. El-Rafie MH, Ahmed HB, Zahran MK (2014) Facile precursor for synthesis of silver nanoparticles using alkali treated maize starch. Int Sch Res Not 2014:1–12. https://doi.org/10.1155/2014/702396

    Article  Google Scholar 

  25. Ortega F, Giannuzzi L, Arce VB, García MA (2017) Active composite starch films containing green synthetized silver nanoparticles. Food Hydrocoll 70:152–162

    Article  CAS  Google Scholar 

  26. Koduru HK, Marino L, Janardhanam V, Scaramuzza N (2016) Influence of thin layer of silver nanoparticles on optical and dielectric properties of poly(vinyl alcohol) composite films. Surf Interfaces 5:47–54. https://doi.org/10.1016/j.surfin.2016.09.008

    Article  CAS  Google Scholar 

  27. Salunke BK, Sathiyamoorthi E, Tran TK, Kim BS (2017) Phyto-synthesized silver nanoparticles for biological applications. Korean J Chem Eng 34:943–951. https://doi.org/10.1007/s11814-017-0036-y

    Article  CAS  Google Scholar 

  28. Zhong Y, Liang G, Jin W et al (2018) Preparation of triangular silver nanoplates by silver seeds capped with citrate-CTA+. RSC Adv 8:28934–28943. https://doi.org/10.1039/c8ra04554b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Leersnyder I, De Gelder L, Van Driessche I, Vermeir P (2019) Revealing the importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles: a case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium. Nanomaterials 9:1684. https://doi.org/10.3390/nano9121684

    Article  CAS  PubMed Central  Google Scholar 

  30. Skandalis N, Dimopoulou A, Georgopoulou A et al (2017) The effect of silver nanoparticles size, produced using plant extract from Arbutus unedo, on their antibacterial efficacy. Nanomaterials 7:178. https://doi.org/10.3390/nano7070178

    Article  CAS  PubMed Central  Google Scholar 

  31. Sharma G, Nam JS, Sharma AR, Lee SS (2018) Antimicrobial potential of silver nanoparticles synthesized using medicinal herb coptidis rhizome. Molecules 23:2268. https://doi.org/10.3390/molecules23092268

    Article  CAS  PubMed Central  Google Scholar 

  32. Salari S, Bahabadi SE, Samzadeh-Kermani A, Yosefzaei F (2019) In-vitro evaluation of antioxidant and antibacterial potential of green synthesized silver nanoparticles using Prosopis farcta fruit extract. Iran J Pharm Res 18:430–445

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Bindhu MR, Umadevi M, Esmail GA et al (2020) Green synthesis and characterization of silver nanoparticles from Moringa oleifera flower and assessment of antimicrobial and sensing properties. J Photochem Photobiol B 205:111836. https://doi.org/10.1016/j.jphotobiol.2020.111836

    Article  CAS  PubMed  Google Scholar 

  34. Kim ST, Lee YJ, Hwang YS, Lee S (2015) Study on aggregation behavior of cytochrome C-conjugated silver nanoparticles using asymmetrical flow field-flow fractionation. Talanta 132:939–944. https://doi.org/10.1016/j.talanta.2014.05.060

    Article  CAS  PubMed  Google Scholar 

  35. Ounkaew A, Kasemsiri P, Jetsrisuparb K et al (2020) Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116767

    Article  PubMed  Google Scholar 

  36. David L, Moldovan B (2020) Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials 10:202. https://doi.org/10.3390/nano10020202

    Article  CAS  PubMed Central  Google Scholar 

  37. Zaki S, El Kady MF, Abd-El-Haleem D (2011) Biosynthesis and structural characterization of silver nanoparticles from bacterial isolates. Mater Res Bull 46:1571–1576. https://doi.org/10.1016/j.materresbull.2011.06.025

    Article  CAS  Google Scholar 

  38. Behravan M, Hossein Panahi A, Naghizadeh A et al (2019) Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. Int J Biol Macromol 124:148–154. https://doi.org/10.1016/j.ijbiomac.2018.11.101

    Article  CAS  PubMed  Google Scholar 

  39. Dananjaya SHS, Erandani WKCU, Kim CH et al (2017) Comparative study on antifungal activities of chitosan nanoparticles and chitosan silver nano composites against Fusarium oxysporum species complex. Int J Biol Macromol 105:478–488. https://doi.org/10.1016/j.ijbiomac.2017.07.056

    Article  CAS  PubMed  Google Scholar 

  40. Asnag GM, Oraby AH, Abdelghany AM (2019) Effect of gamma-irradiation on the structural, optical and electrical properties of PEO/starch blend containing different concentrations of gold nanoparticles. Radiat Effects Defects Solids 174:579–595. https://doi.org/10.1080/10420150.2019.1619736

    Article  CAS  Google Scholar 

  41. Abdelghany AM, Oraby AH, Asnag GM (2019) Structural, thermal and electrical studies of polyethylene oxide/starch blend containing green synthesized gold nanoparticles. J Mol Struct 1180:15–25. https://doi.org/10.1016/j.molstruc.2018.11.095

    Article  CAS  Google Scholar 

  42. Janaum N, Butsiri T, Kasemsiri P et al (2020) Multi response optimization of bioactive starch foam composite using Taguchi’s method and grey relational analysis. J Polym Environ. https://doi.org/10.1007/s10924-020-01706-x

    Article  Google Scholar 

  43. Kędziora A, Speruda M, Krzyżewska E et al (2018) Similarities and differences between silver ions and silver in nanoforms as antibacterial agents. Int J Mol Sci 19:444. https://doi.org/10.3390/ijms19020444

    Article  CAS  PubMed Central  Google Scholar 

  44. Dairi N, Ferfera-Harrar H, Ramos M, Garrigós MC (2019) Cellulose acetate/AgNPs-organoclay and/or thymol nano-biocomposite films with combined antimicrobial/antioxidant properties for active food packaging use. Int J Biol Macromol 121:508–523. https://doi.org/10.1016/j.ijbiomac.2018.10.042

    Article  CAS  PubMed  Google Scholar 

  45. Gholamali I, Asnaashariisfahani M, Alipour E (2019) Silver nanoparticles incorporated in pH-sensitive nanocomposite hydrogels based on carboxymethyl chitosan-poly (vinyl alcohol) for use in a drug delivery system. Regen Eng Transl Med. https://doi.org/10.1007/s40883-019-00120-7

    Article  Google Scholar 

  46. Paredes D, Ortiz C, Torres R (2014) Synthesis, characterization, and evaluation of antibacterial effect of Ag nanoparticles against Escherichia coli O157:H7 and methicillin-resistant Staphylococcus aureus (MRSA). Int J Nanomed 9:1717–1729. https://doi.org/10.2147/IJN.S57156

    Article  Google Scholar 

  47. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182. https://doi.org/10.1016/j.jcis.2004.02.012

    Article  CAS  PubMed  Google Scholar 

  48. Cao TL, Bin SK (2019) Effects of gum karaya addition on the characteristics of loquat seed starch films containing oregano essential oil. Food Hydrocoll 97:105198. https://doi.org/10.1016/j.foodhyd.2019.105198

    Article  CAS  Google Scholar 

  49. Mathew S, Snigdha S, Mathew J, Radhakrishnan EK (2019) Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag Shelf Life 19:155–166. https://doi.org/10.1016/j.fpsl.2018.12.009

    Article  Google Scholar 

  50. Cano A, Cháfer M, Chiralt A, González-Martínez C (2016) Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packag Shelf Life 10:16–24. https://doi.org/10.1016/j.fpsl.2016.07.002

    Article  Google Scholar 

  51. Cheng TH, Bin LS, Chen LC, Chen HH (2018) Studies of the antimicrobial ability and silver ions migration from silver nitrate-incorporated electrospun nylon nanofibers. Food Packag Shelf Life 16:129–137. https://doi.org/10.1016/j.fpsl.2018.03.003

    Article  Google Scholar 

  52. Hahn A, Brandes G, Wagener P, Barcikowski S (2011) Metal ion release kinetics from nanoparticle silicone composites. J Control Release 154:164–170. https://doi.org/10.1016/j.jconrel.2011.05.023

    Article  CAS  PubMed  Google Scholar 

  53. Bedlovičová Z, Strapáč I, Baláž M, Salayová A (2020) A brief overview on antioxidant activity determination of silver nanoparticles. Molecules 25:1–24. https://doi.org/10.3390/molecules25143191

    Article  CAS  Google Scholar 

  54. Sudha A, Jeyakanthan J, Srinivasan P (2017) Green synthesis of silver nanoparticles using Lippia nodiflora aerial extract and evaluation of their antioxidant, antibacterial and cytotoxic effects. Resour Technol 3:506–515. https://doi.org/10.1016/j.reffit.2017.07.002

    Article  Google Scholar 

  55. Küp FÖ, Çoşkunçay S, Duman F (2020) Biosynthesis of silver nanoparticles using leaf extract of Aesculus hippocastanum (horse chestnut): evaluation of their antibacterial, antioxidant and drug release system activities. Mater Sci Eng C. https://doi.org/10.1016/j.msec.2019.110207

    Article  Google Scholar 

  56. Yu H, Sun B, Zhang D et al (2014) Reinforcement of biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with cellulose nanocrystal/silver nanohybrids as bifunctional nanofillers. J Mater Chem B 2:8479–8489. https://doi.org/10.1039/c4tb01372g

    Article  CAS  PubMed  Google Scholar 

  57. Ji N, Liu C, Zhang S et al (2016) Elaboration and characterization of corn starch films incorporating silver nanoparticles obtained using short glucan chains. LWT-Food Sci Technol 74:311–318. https://doi.org/10.1016/j.lwt.2016.07.065

    Article  CAS  Google Scholar 

  58. Marie Arockianathan P, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50:939–946. https://doi.org/10.1016/j.ijbiomac.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  59. Pelissari FM, Grossmann MVE, Yamashita F, Pined EAG (2009) Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. J Agric Food Chem 57:7499–7504. https://doi.org/10.1021/jf9002363

    Article  CAS  PubMed  Google Scholar 

  60. Kanmani P, Rhim J (2014) Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food Chem 148:162–169. https://doi.org/10.1016/j.foodchem.2013.10.047

    Article  CAS  PubMed  Google Scholar 

  61. Lee JH, Jeong D, Kanmani P (2019) Study on physical and mechanical properties of the biopolymer/silver based active nanocomposite films with antimicrobial activity. Carbohydr Polym 224:115159. https://doi.org/10.1016/j.carbpol.2019.115159

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the 2020 Royal Golden Jubilee Ph.D. scholarship of the Thailand Research Fund (grant number PHD/22/2020) under the supervision of the National Research Council of Thailand (NRCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pornnapa Kasemsiri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikhao, N., Kasemsiri, P., Ounkaew, A. et al. Bioactive Nanocomposite Film Based on Cassava Starch/Polyvinyl Alcohol Containing Green Synthesized Silver Nanoparticles. J Polym Environ 29, 672–684 (2021). https://doi.org/10.1007/s10924-020-01909-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01909-2

Keywords

Navigation