Skip to main content

Advertisement

Log in

Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The soil degradation of fully biobased agricultural mulches prepared from polylactic acid (PLA) and blends of PLA and poly3-hydroxybutyrate-co-4-hydroxybutyrate (polyhydroxyalkanoate, or PHA) using nonwoven textile technology was compared to that of a commercial biodegradable mulch film, BioTelo (Dubois Agrinovation, Waterford, Canada). The addition of PHA to PLA to the feedstock blend produced nonwovens that possessed lower tensile strength and molecular weight and increased the average fiber diameter of mulches. A meltblown (MB) nonwoven mulch prepared from a PLA–PHA 72/28 w/w blend underwent the greatest degradation, achieving a 78 % loss of tensile strength and a 25.9 % decrease of weight-averaged molecular weight during 10 and 30 week of soil burial, respectively. The mass fraction of PHA decreased during soil burial, suggesting the preferential microbial assimilation of PHA over PLA. BioTelo underwent a 29 % loss of tensile strength but no appreciable change of molecular weight for its chloroform-soluble components. In contrast, spunbond (SB) PLA mulches did not undergo any appreciable degradation during the 30 week soil burial studies. The results suggest that the MB–PLA + PHA nonwoven may serve as a potentially valuable biodegradable agricultural mulch, and that SB–PLA may be useful as a compostable material for long-term agricultural applications, such as row covers and landscape fabrics. A soil degradation study of MB–PLA + PHA that directly compared untreated compost-enriched soil to sterilized soil-compost mixture demonstrated that the loss of tensile strength occurred only in the unsterilized soil, suggesting this event is directly associated with soil microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDM:

“Biodegradable” mulch

CB:

Carbon black (dyeing agent)

CFU:

Colony forming units (quantification of microorganisms)

DSC:

Differential scanning calorimetry

GPC:

Gel permeation chromatography

LSD:

Least significant difference (statistical analysis method)

MB:

Meltblown nonwoven mulches

Mw :

Weight-averaged molecular weight

PDI:

Polydispersity index

PHA:

Polyhydroxyalkanoate

PLA:

Poloylactic acid

SB:

Spunbond nonwoven mulches

SEM:

Scanning electron microscopy

Tc :

Crystallization temperature (°C)

Tg :

Glass transition temperature (°C)

Tm :

Melting temperature (°C)

UT:

University of Tennessee

Xc,PLA :

Fraction of PLA residing in crystalline morphology

ΔHc :

Crystallization enthalpy (J g−1)

ΔHm :

Melting enthalpy (J g−1)

References

  1. Espi E, Salmeron A, Fontecha A, Garcia Y, Real AI (2006) Plastic films for agricultural applications. J Plast Film Sheeting 22:85–102

    Article  CAS  Google Scholar 

  2. Lamont WJ Jr (2005) Plastics: modifying the microclimate for the production of vegetable crops. HortTechnology 15:477–481

    Google Scholar 

  3. Kasirajan S, Ngouajio M (2012) Polyethylene and biodegradable mulches for agricultural applications: a review. Agron Sustain Dev 32:501–529

    Article  CAS  Google Scholar 

  4. McCraw D, Motes JE (1991) Use of plastic mulch and row covers in vegetable production (Oklahoma State University Extension Fact Sheet HLA-6034). Stillwater, OK

    Google Scholar 

  5. Briassoulis D, Dejean C (2010) Critical review of norms and standards for biodegradable agricultural plastics part I: biodegradation in soil. J Polym Environ 18:384–400

    Article  CAS  Google Scholar 

  6. Lemieux PM (1997) Evaluation of emissions from the open burning of household waste in barrels (EPA Report 600/R-97-134a). Environmental Protection Agency, Washington

    Google Scholar 

  7. Levitan L (2005) Reducing dioxin emissions by recycling agricultural plastics: creating a viable alternative to open burning. Great Lakes Regional Pollution Prevention Roundtable, New York

    Google Scholar 

  8. Hayes DG, Dharmalingam S, Wadsworth LC, Leonas KK, Miles C, Inglis DA (2012) Biodegradable agricultural mulches derived from biopolymers. In: Khemani KC, Scholz C (eds) Degradable polymers and materials: principles and practice (2nd Edition; ACS Symposium Series, Volume 1114). American Chemical Society, Washington, pp 201–223

    Chapter  Google Scholar 

  9. Martin-Closas L, Pelacho AM (2011) Agronomic potential of biopolymer films. In: Plackett D (ed) Biopolymers-new materials for sustainable films and coatings. Wiley, West Sussex

    Google Scholar 

  10. Bos U, Makishi C, Fischer M (2008) Life cycle assessment of common used agricultural plastic products in the EU. Acta Hort 801:341–350

    Google Scholar 

  11. Hussain I, Hamid H (2003) Plastics in agriculture. In: Andrady AL (ed) Plastics and the environment. Wiley, New York, pp 185–209

    Google Scholar 

  12. Corbin AT, Miles C, Cowan J, Hayes DG, Moore-Kucera J, Inglis DA (2013) Current and future prospects for biodegradable plastic mulch in certified organic production systems, eXtension Foundation, eOrganic Community of Practice 67951

  13. Shogren RL, Hochmuth RC (2004) Field evaluation of watermelon grown on paperpolymerized vegetable oil mulches. HortScience 39:1588–1591

    Google Scholar 

  14. U.S. Dept. Agriculture (Agricultural Marketing Service) (2013) National Organic Program; Proposed Amendments to the National List of Allowed and Prohibited Substances (Crops and Processing; 7 CFR Part 205, Document Number AMS-NOP-13-011, NOP-13-01PR, RIN 0581-AD33). Fed Reg 78:52100–52107

    Google Scholar 

  15. ASTM International (2012) Standard specification for aerobically biodegradable plastics in soil environment (ASTM WK29802). West Conshohocken, PA

    Google Scholar 

  16. Siegenthaler KO, Kuenkel A, Skupin G, Yamamoto M (2012) Ecoflex and Ecovio: biodegradable, performance-enabling plastics. Adv Polym Sci 245:91–136

    Article  CAS  Google Scholar 

  17. Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176

    Article  CAS  Google Scholar 

  18. Goldberger JR, Jones RE, Miles CA, Wallace RW, Inglis DA (2013) Barriers and bridges to the adoption of biodegradable plastic mulches for US specialty crop production. Renew Agric Food Sys 30:143–153

    Article  Google Scholar 

  19. Miles C, Wallace R, Wszelaki A, Martin J, Cowan J, Walters T, Inglis DA (2012) Deterioration of potentially biodegradable alternative to black plastic mulch in three tomato production regions. HortScience 47:1270–1277

    Google Scholar 

  20. Cowan JS, Inglis DA, Miles C (2013) Deterioration of three potentially biodegradable plastic mulches before and after soil incorporation in a broccoli field production system in northwestern Washington. HortTechnology 23:6

    Google Scholar 

  21. Cowan JS, Miles C, Andrews PK, Inglis Debra A (2014) Biodegradable mulch performed comparable to polyethylene in high tunnel tomato (Solanum lycopersicum L.) production. J Sci Food Agric 94:1854–1864

    Article  CAS  Google Scholar 

  22. Kijchavengkul T, Auras R, Rubino M, Alvarado E, Camacho Montero JR, Rosales JM (2010) Atmospheric and soil degradation of aliphatic-aromatic polyester films. Polym Degrad Stab 95:99–107

    Article  CAS  Google Scholar 

  23. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part II: laboratory simulated conditions. Chemosphere 71:1607–1616

    Article  CAS  Google Scholar 

  24. Kijchavengkul T, Auras R, Rubino M, Ngouajio M, Fernandez RT (2008) Assessment of aliphatic–aromatic copolyester biodegradable mulch films. Part I: field study. Chemosphere 71:942–953

    Article  CAS  Google Scholar 

  25. Wadsworth LC, Hayes DG, Wszelaki AL, Washington TL, Martin J, Lee J, Raley R, Pannell CT, Dharmalingam S, Miles C, Inglis DA, Saxton AM (2013) Evaluation of degradable spun–melt 100 % polylactic acid nonwovens mulch materials in a greenhouse envrionment. J Eng Fibers Fabr 8:50–59

    CAS  Google Scholar 

  26. Khan AYA, Wadsworth LC, Ryan CM (1995) Polymer-laid nonwovens from poly(lactide) resin. Int Nonwovens J 7:69–73

    Google Scholar 

  27. Dugan JS (2001) Novel properties of PLA fibers. Int Nonwovens J 10:29–33

    CAS  Google Scholar 

  28. Feng S, Jiao X (2011) The application of PLA resin on nonwovens production. Adv Mater Res (Durnten-Zurich, Switz.) 332–334:1239–1242

    Article  Google Scholar 

  29. Li L, Zhang J, Li S, Qian X (2011) Research progress of elastic nonwovens with meltblown technology. Adv Mater Res (Durnten-Zurich, Switz.) 332–334:1247–1252

    Article  Google Scholar 

  30. Rani A, Hussain A, Papnai N (2007) Non woven fabric construction. Synth Fibres 36:6–20

    CAS  Google Scholar 

  31. Endres H-J, Siebert-Raths A (2011) Engineering biopolymers—markets, manufacturing, properties and applications. Hsanser Publishers, Munich

    Book  Google Scholar 

  32. Sodergard A, Stolt M (2010) Industrial production of high molecular weight poly(lactic acid). In: Auras R, Lim LT, Selke SEM, Tsuji H (eds) Poly(lactic acid): synthesis, structures, properties, processing, and applications. Wiley, Hoboken, pp 27–41

    Chapter  Google Scholar 

  33. Kawai F (2010) Polylactic acid (PLA)-degrading microorganisms and PLA depolymerases. In: Cheng HN, Gross RA (eds) Green polymer chemistry: biocatalysis and biomaterials (ACS Symp. Series, Vol 1043). American Chemical Society, Washington, pp 405–414

    Chapter  Google Scholar 

  34. Madhavan Nampoothiri K, Nair NR, John RP (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101:8493–8501

    Article  CAS  Google Scholar 

  35. Tokiwa Y, Calabia BP, Ugwu CU, Aiba S (2009) Biodegradability of plastics. Int J Mol Sci 10:3722–3742

    Article  CAS  Google Scholar 

  36. Karamanlioglu M, Robson GD (2013) The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym Degrad Stab 98:2063–2071

    Article  CAS  Google Scholar 

  37. Rudnik E, Briassoulis D (2011) Degradation behaviour of poly(lactic acid) films and fibres in soil under Mediterranean field conditions and laboratory simulations testing. Ind Crops Prod 33:648–658

    Article  CAS  Google Scholar 

  38. Rudnik E, Briassoulis D (2011) Comparative biodegradation in soil behaviour of two biodegradable polymers based on renewable resources. J Polym Environ 19:18–39

    Article  CAS  Google Scholar 

  39. Shi B, Palfery D (2010) Enhanced mineralization of PLA meltblown materials due to plasticization. J Polym Environ 18:122–127

    Article  CAS  Google Scholar 

  40. Ji X, Miles C, Martin JT, Wallace RW, Wszelaki AL, Moore-Kucera J, Inglis DA, Lee J (2013) Effect of biodegradable mulches on environmental data collected from high tunnel and open field settings. HortScience 48:S335–S336

    Google Scholar 

  41. Martin JT (2013) The influence of organically managed high tunnel and open field production systems on strawberry (Fragaria × ananassa) quality and yield, tomato (Solanum lycopersicum) yield, and evaluation of plastic mulch alternatives (Masters Thesis). Plant Sci. University of Tennessee, Knoxville, TN

  42. ASTM International (2013) Standard practice for operating xenon arc light apparatus for exposure of non-metallic materials (ASTM G155). West Conshohocken, PA

    Google Scholar 

  43. Hablot E, Dharmalingam S, Hayes DG, Wadsworth LC, Blazy C, Narayan R (2014) Effect of simulated weathering on physico-chemical properties and inherent biodegradation of PLA/PHA non-woven-based agricultural mulches. J Polym Environ 22:417–429

    Article  CAS  Google Scholar 

  44. Li C, Moore-Kucera J, Miles C, Leonas K, Lee J, Corbin A, Inglis D (2014) Degradation of potentially biodegradable plastic mulch Films at three diverse U.S. locations. Agroecol Sustain Food Sys 38:861–889

    Article  Google Scholar 

  45. ASTM International (2011) Standard test method for determining aerobic biodegradation of plastic materials under controlled composting conditions (ASTM D5338). West Conshohocken, PA

    Google Scholar 

  46. Müller RJ (2004) Biodegradability of polymers: regulations and methods for testing. In: Steinbüchel A (ed) General aspects and special applications (Biopolymers Series, Vol. 10). Wiley, Weinheim, pp 365–374

    Google Scholar 

  47. Kijchavengkul T, Auras R, Rubino M, Selke S, Ngouajio M, Fernandez RT (2010) Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stab 95:2641–2647

    Article  CAS  Google Scholar 

  48. Hu Y, Sato H, Zhang J, Noda I, Ozaki Y (2008) Crystallization behavior of poly(l-lactic acid) affected by the addition of a small amount of poly(3-hydroxybutyrate). Polymer 49:4204–4210

    Article  CAS  Google Scholar 

  49. Weng Y-X, Wang L, Zhang M, Wang X-L, Wang Y-Z (2013) Biodegradation behavior of P(3HB,4HB)/PLA blends in real soil environments. Polym Test 32:60–70

    Article  CAS  Google Scholar 

  50. Dharmalingam S (2014) Biodegradation and photodegradation of polylactic acid and polylactic acid/polyhydroxyalkanoate blends nonwoven agricultural mulches in ambient soil conditions (PhD Dissertation). Biosyst Eng. University of Tennessee, Knoxville, TN

  51. Saito Y, Doi Y (1994) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) in Comamonas acidovorans. Int J Biol Macromol 16:99–104

    Article  CAS  Google Scholar 

  52. Chandra R, Rustgi R (1998) Biodegradable polymers. Prog Polym Sci 23:1273–1335

    Article  CAS  Google Scholar 

  53. ASTM International (2004) Standard test method for thickness of nonwoven fabrics (ASTM D5729). West Conshohocken, PA

    Google Scholar 

  54. ASTM International (2009) Standard test methods for mass per unit area (weight) of fabric (ASTM D3776/D3776 M). West Conshohocken, PA

    Google Scholar 

  55. ASTM International (2011) Standard test method for breaking force and elongation of textile fabrics (Strip Method; ASTM D5035). West Conshohocken, PA

    Google Scholar 

  56. Cowan JS (2013) The use of biodegradable mulch for tomato and broccoli production: crop yield and quality, mulch deterioration, and growers’ perception (PhD Dissertation). Horticulture, Washington State University, Pollman, WA

  57. Kijchavengkul T, Auras R (2008) Compostability of polymers. Polym Int 57:793–804

    Article  CAS  Google Scholar 

  58. Garlotta D (2002) A literature review of poly(lactic acid). J Polym Environ 9:63–84

    Article  Google Scholar 

  59. Saito Y, Nakamura S, Hiramitsu M, Doi Y (1996) Microbial synthesis and properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Int 39:169–174

    Article  CAS  Google Scholar 

  60. Dagnon KL, Thellen C, Ratto JA, D’Souza NA (2010) Physical and thermal analysis of the degradation of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) coated paper in a constructed soil medium. J Polym Environ 18:510–522

    Article  CAS  Google Scholar 

  61. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions. Kolloid-Z Z Polym 251:980–990

    Article  CAS  Google Scholar 

  62. Ahmed J, Varshney SK, Zhang J-X, Ramaswamy HS (2009) Effect of high pressure treatment on thermal properties of polylactides. J Food Eng 93:308–312

    Article  CAS  Google Scholar 

  63. Nakamura S, Doi Y, Scandola M (1992) Microbial synthesis and characterization of poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Macromolecules 25:4237–4241

    Article  CAS  Google Scholar 

  64. Hakkarainen M, Karlsson S, Albertsson AC (2000) Rapid (bio)degradation of polylactide by mixed culture of compost microorganisms-low molecular weight products and matrix changes. Polymer 41:2331–2338

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded through a grant from the NIFA Specialty Crops Research Initiative, USDA SCRI-SREP Grant Award No. 2009-02484. The authors thank Natureworks (Blair, NE, USA) and GreenBio (Tianjin, China) for donation of PLA (Ingeo™ 6202D) and PHA feedstocks, respectively. Dr. Arnold M. Saxton (Animal Sciences Dept., UT) assisted with the statistical analysis. Dr. Mark Radosevich [Biosystems Engineering and Soil Science (BESS) Dept., UT] provided facilities and expertise for the sterilization of soil, Experiment B. Dr. William Klingeman and Mr. Phil Flanagan (Plant Sciences Dept., UT) provided access and maintenance of the greenhouse used to conduct the experiment. Dr. Nicole Labbé and Ms. Lindsey Kline (Center for Renewal Carbon, UT) assisted with FTIR data collection. Drs. Elodie Hablot and Ramani Narayan (Chemical and Materials Engineering Dept., Michigan State University), provided facilities for the measurement of tensile strength for Experiment A. Mr. Rob Raley (BESS Dept., UT) assisted in collecting soil moisture and temperature.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas G. Hayes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dharmalingam, S., Hayes, D.G., Wadsworth, L.C. et al. Soil Degradation of Polylactic Acid/Polyhydroxyalkanoate-Based Nonwoven Mulches. J Polym Environ 23, 302–315 (2015). https://doi.org/10.1007/s10924-015-0716-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-015-0716-9

Keywords

Navigation