Skip to main content
Log in

High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We provide and analyze the high order algorithms for the model describing the functional distributions of particles performing anomalous motion with power-law jump length and tempered power-law waiting time. The model is derived in Wu et al. (Phys Rev E 93:032151, 2016), being called the time-tempered fractional Feynman–Kac equation named after Richard Feynman and Mark Kac who first considered the model describing the functional distribution of normal motion. The key step of designing the algorithms is to discretize the time tempered fractional substantial derivative, being defined as

$$\begin{aligned} {^S\!}D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!=\!D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t)\!-\!\lambda ^\gamma G(x,p,t) \end{aligned}$$

with \(\widetilde{\lambda }=\lambda + pU(x),\, p=\rho +J\eta ,\, J=\sqrt{-1}\), where

$$\begin{aligned} D_t^{\gamma ,\widetilde{\lambda }} G(x,p,t) =\frac{1}{\varGamma (1-\gamma )} \left[ \frac{\partial }{\partial t}+\widetilde{\lambda } \right] \int _{0}^t{\left( t-z\right) ^{-\gamma }}e^{-\widetilde{\lambda }\cdot (t-z)}{G(x,p,z)}dz, \end{aligned}$$

and \(\lambda \ge 0\), \(0<\gamma <1\), \(\rho >0\), and \(\eta \) is a real number. The designed schemes are unconditionally stable and have the global truncation error \(\mathscr {O}(\tau ^2+h^2)\), being theoretically proved and numerically verified in complex space. Moreover, some simulations for the distributions of the first passage time are performed, and the second order convergence is also obtained for solving the ‘physical’ equation (without artificial source term).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Klafter, J., Sokolov, I.M.: First Steps in Randow Walks: From Tools to Applications. Oxford University Press, New York (2011)

    Book  MATH  Google Scholar 

  2. Baeumera, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruno, R., Sorriso-Valvo, L., Carbone, V., Bavassano, B.: A possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations. Europhys. Lett. 66, 146–152 (2004)

    Article  Google Scholar 

  4. Cartea, Á., del-Castillo-Negrete, D.: Fluid limit of the continuous-time random walk with general Lévy jump distribution functions. Phys. Rev. E 76, 041105 (2007)

    Article  Google Scholar 

  5. del-Castillo-Negrete, D.: Truncation effects in super diffusive front propagation with Lévy flights. Phys. Rev. E 79, 031120 (2009)

    Article  Google Scholar 

  6. Hanert, E., Piret, C.: A chebyshev pseudo-spectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Sci. Comput. 36, A1797–A1812 (2014)

    Article  MATH  Google Scholar 

  7. Stanislavsky, A., Weron, K., Weron, A.: Anomalous diffusion with transient subordinators: a link to compound relaxation laws. J. Chem. Phys. 140, 054113 (2014)

    Article  Google Scholar 

  8. Wu, X.C., Deng, W.H., Barkai, E.: Tempered fractional Feynman–Kac equation: theory and examples. Phys. Rev. E 93, 032151 (2016)

    Article  MathSciNet  Google Scholar 

  9. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Fractional diffusion equation for a power-law-truncated Lévy process. Physica A 336, 245–251 (2004)

    Article  Google Scholar 

  10. Sabzikar, F., Meerschaert, M.M., Chen, J.H.: Tempered fractional calculus. J. Comput. Phys. 293, 14–28 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2076–2092 (2005)

    MathSciNet  Google Scholar 

  12. Chen, M.H., Deng, W.H.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, C.P., Ding, H.F.: Higher order finite difference method for the reaction and anomalous-diffusion equation. Appl. Math. Model. 38, 3802–3821 (2014)

    Article  MathSciNet  Google Scholar 

  14. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703–1727 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhang, Y.N., Sun, Z.Z., Zhao, X.: Compact ADI schemes for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 50, 1535–1555 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection–diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Deng, W.H.: Finite element method for the space and time fractional Fokker–Planck equation. SIAM J. Numer. Anal. 47, 204–226 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Meth. Partial Differ. Equ. 22, 558–576 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mustapha, K., Mclean, W.: Superconvergence of a discontinuous Galerkin method for fractional diffusion and wave equations. SIAM J. Numer. Anal. 51, 491–515 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approximations for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35, A2976–A3000 (2013)

    Article  MATH  Google Scholar 

  22. Li, X.J., Xu, C.J.: A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, 2108–2131 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, X.H., Zhang, H.X., Xu, D.: Orthogonal spline collocation method for the two-dimensional fractionl sub-difusion equation. J. Comput. Phys. 256, 824–837 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pang, H., Sun, H.: Multigrid method for fractional diffusion equations. J. Comput. Phys. 231, 693–703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang, H., Basu, T.: A fast finite difference method for two-dimensional space-fractional diffusion equations. SIAM J. Sci. Comput. 34, A2444–A2458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lubich, Ch.: Discretized fractional calculus. SIAM J. Math. Anal. 17, 704–719 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hao, Z.P., Sun, Z.Z., Cao, W.R.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ji, C.C., Sun, Z.Z.: A high-order compact finite difference shcemes for the fractional sub-diffusion equation. J. Sci. Comput. 64, 959–985 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Li, C., Deng, W.H.: High order schemes for the tempered fractional diffusion equations. Adv. Comput. Math. 42, 543–572 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Friedrich, R., Jenko, F., Baule, A., Eule, S.: Anomalous diffusion of inertial, weakly damped particles. Phys. Rev. Lett. 96, 230601 (2006)

    Article  Google Scholar 

  31. Carmi, S., Barkai, E.: Fractional Feynman–Kac equation for weak ergodicity breaking. Phys. Rev. E 84, 061104 (2011)

    Article  Google Scholar 

  32. Chen, M.H., Deng, W.H.: Discretized fractional substantial calculus. ESAIM: Math. Model. Numer. Anal. 49, 373–394 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Chen, M.H., Deng, W.H.: High order algorithms for the fractional substantial diffusion equation with truncated Lévy flights. SIAM J. Sci. Comput. 37, A890–A917 (2015)

    Article  MATH  Google Scholar 

  34. Deng, W.H., Chen, M.H., Barkai, E.: Numerical algorithms for the forward and backward fractional Feynman–Kac equations. J. Sci. Comput. 62, 718–746 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Deng, W.H., Zhang, Z.J.: Numerical schemes of the time tempered fractional Feynman–Kac equation. Comput. Math. Appl. 73(6), 1063–1076 (2017)

    Article  MathSciNet  Google Scholar 

  36. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  37. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  38. Chen, M.H., Deng, W.H.: Fourth order difference approximations for space Riemann–Liouville derivatives based on weighted and shifted Lubich difference operators. Commun. Comput. Phys. 16, 516–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ortigueira, M.D.: Riesz potential operators and inverses via fractional centred derivatives. Int. J. Math. Math. Sci. 62, 48391 (2006)

    MathSciNet  MATH  Google Scholar 

  40. Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann–Liouville drivative. Appl. Numer. Math. 90, 22–37 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  41. Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Chen, S., Liu, F., Zhuang, P., Anh, V.: Finite difference approximation for the fractional Fokker–Planck equation. Appl. Math. Model. 33, 256–273 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. Chan, R.H., Jin, X.Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, Philadelphia (2007)

    Book  MATH  Google Scholar 

  45. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer, Berlin (2007)

    MATH  Google Scholar 

  46. Ros-Oton, X., Serra, J.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Chen.

Additional information

This work was supported by NSFC 11601206 and 11671182.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Deng, W. High Order Algorithm for the Time-Tempered Fractional Feynman–Kac Equation. J Sci Comput 76, 867–887 (2018). https://doi.org/10.1007/s10915-018-0640-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0640-y

Keywords

Mathematics Subject Classification

Navigation