Skip to main content
Log in

Fast Methods for Computing Centroidal Voronoi Tessellations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

A Centroidal Voronoi tessellation (CVT) is a Voronoi tessellation in which the generators are the centroids for each Voronoi region. CVTs have many applications to computer graphics, image processing, data compression, mesh generation, and optimal quantization. Lloyd’s method, the most widely method used to generate CVTs, converges very slowly for larger scale problems. Recently quasi-Newton methods using the Hessian of the associated energy as a preconditioner are developed to speed up the rate of convergence. In this work a graph Laplacian preconditioner and a two-grid method are used to speed up quasi-Newton schemes. The proposed graph Laplacian is always symmetric, positive definite and easy to assemble, while the Hessian, in general, may not be positive definite nor easy to assemble. The two-grid method, in which an optimization method using a relaxed stopping criteria is applied on a coarse grid, and then the coarse grid is refined to generate a better initial guess in the fine grid, will further speed up the convergence and lower the energy. Numerical tests show that our preconditioned two-grid optimization methods converges fast and has nearly linear complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Benzi, M., Tůma, M.: A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30, 305–340 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brandt, A.: Algebraic multigrid theory: the symmetric case. Appl. Math. Comput. 19(1–4), 23–56 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, L.: \(i\)FEM: An Integrated Finite Element Methods Package in MATLAB. Technical Report, UC Irvine

  4. Chen, L., Holst, M.: Efficient mesh optimization schemes based on optimal Delaunay triangulations. Comput. Methods Appl. Mech. Eng. 200, 967–984 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chen, L., Xu, J.: Optimal Delaunay triangulations. J. Comput. Math. 22(2), 299–308 (2004)

    MATH  MathSciNet  Google Scholar 

  6. Du, Q., Emelianenko, M.: Acceleration schemes for computing centroidal Voronoi tessellations. Numer. Linear Algebra 13(2–3), 173–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Du, Q., Emelianenko, M.: Uniform convergence of a nonlinear energy-based multilevel quantization scheme. SIAM J. Numer. Anal. 46(3), 1483–1502 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Du, Q., Emelianenko, M., Ju, L.: Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations. SIAM J. Numer. Anal. 44(1), 102–119 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Du, Q., Faber, V., Gunzburger, M.: Centroidal voronoi tessellations: applications and algorithms. SIAM Rev. 41(4), 637–676 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Du, Q., Gunzburger, M.: Grid generation and optimization based on centroidal Voronoi tessellations. Appl. Math. Comput. 133, 591–607 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Du, Q., Gunzburger, M., Ju, L.: Advances in studies and applications of centroidal Voronoi tessellations. Numer. Math. Theor. Methods Appl. 3(2), 119–142 (2010)

    MATH  MathSciNet  Google Scholar 

  12. Du, Q., Gunzburger, M., Ju, L., Wang, X.: Centroidal Voronoi tessellation algorithms for image compression, segmentation, and multichannel restoration. J. Math. Imaging Vis. 24, 177–194 (2006)

    Article  MathSciNet  Google Scholar 

  13. Emelianenko, M.: Fast multilevel CVT-based adaptive data visualization algorithm. Numer. Math. Theor. Methods Appl. 3, 195–211 (2010)

    MATH  MathSciNet  Google Scholar 

  14. Emelianenko, M., Ju, L., Rand, A.: Nondegeneracy and weak global convergence of the Lloyd algorithm in \(\mathbb{R}^d\). SIAM J. Numer. Anal. 46(3), 1423–1441 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fabri, A., Giezeman, G., Kettner, L., Schirra, S., Schönherr, S., et al.: On the design of CGAL, the computational geometry algorithms library (1998)

  16. Fejes Tóth, G.: A stability criterion to the moment theorem. Stud. Sci. Math. Hung. 38(1), 209–224 (2001)

    MATH  Google Scholar 

  17. Fletcher, R., Reeves, C.M.: Function minimization by conjugate gradients. Comput. J. 7(2), 149–154 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  18. Gersho, A.: Asymptotically optimal block quantization. IEEE Trans. Inf. Theory 25(4), 373–380 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  19. Gray, R.M., Neuhoff, D.L.: Quantization. IEEE Trans. Inf. Theory 44, 2325–2384 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  20. Gruber, P.M.: Optimum quantization and its applications. Adv. Math. 186(2), 456–497 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Hager, W.W., Zhang, H.: A survey of nonlinear conjugate gradient methods. Pac. J. Optim. 2(1), 35–58 (2006)

    MATH  MathSciNet  Google Scholar 

  22. Hestenes, M.R., Stiefel, E.: Methods of Conjugate Gradients for Solving Linear Systems (1952)

  23. Koren, Y., Yavneh, I.: Adaptive multiscale redistribution for vector quantization. SIAM J. Sci. Comput. 27(5), 1573–1593 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Koren, Y., Yavneh, I., Spira, A.: A multigrid approach to the scalar quantization problem. IEEE Trans. Inform. Theory 51(8), 2993–2998 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lin, C., Moré, J.J.: Incomplete cholesky factorizations with limited memory. SIAM J. Sci. Comput. 21(1), 24–45 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  27. Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D., Lu, L., Yang, C.: On centroidal Voronoi tessellation—energy smoothness and fast computation. ACM Trans. Graph. 28, 101:1–101:17 (2009)

    Google Scholar 

  28. Livne, O., Brandt, A.: Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver. ArXiv e-prints (2011)

  29. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inform. Theory 28(2), 129–137 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nguyen, H., Burkardt, J., Gunzburger, M., Ju, L., Saka, Y.: Constrained CVT meshes and a comparison of triangular mesh generators. Comput. Geom. 42(1), 1–19 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  32. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Revue. Fr. Inf. Rech. Oper. 3(1), 35–43 (1969)

    MATH  MathSciNet  Google Scholar 

  33. Ruge, J.W., Stüben, K.: Algebraic multigrid (AMG). In: McCormick, S.F. (ed.) Multigrid Methods, Frontiers in Applied Mathematics, vol. 3, pp. 73–130. SIAM, Philadelphia, PA (1987)

    Chapter  Google Scholar 

  34. Wang, D., Du, Q.: Mesh optimization based on the centroidal voronoi tessellation. Int. J. Numer. Anal. Model. 2, 100–113 (2005)

    MathSciNet  Google Scholar 

  35. Xu, J.: Two-grid discretization techniques for linear and nonlinear PDEs. SIAM J. Numer. Anal. 33(5), 1759–1777 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Xu, J.: Fast Poisson-based solvers for linear and nonlinear PDEs. In: Proceedings of the International Congress of Mathematics, vol. 4, pp. 2886–2912. (2010)

  37. Zhang, J., Emelianenko, M., Du, Q.: Periodic centroidal Voronoi tessellations. IJNAM 9(4), 950–969 (2012)

    MATH  MathSciNet  Google Scholar 

  38. Zimmer, H.: Voronoi and Delaunay techniques. In: Proceedings of Lecture Notes, Computer Sciences, vol. 8. (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Chen.

Additional information

The first author was supported by 2010–2011 UC Irvine Academic Senate Council on Research, Computing and Libraries (CORCL) award. The second author was supported by NSFC (Grant No. 11301449), in part by Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20134301120003). The third author was supported by National Science Foundation (NSF) (DMS-0811272 and DMS-1115961), in part by 2009–2011 UC Irvine Academic Senate Council on Research, Computing and Libraries (CORCL) award, and in part by Department of Energy prime award # DE-SC0006903.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hateley, J.C., Wei, H. & Chen, L. Fast Methods for Computing Centroidal Voronoi Tessellations. J Sci Comput 63, 185–212 (2015). https://doi.org/10.1007/s10915-014-9894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-014-9894-1

Keywords

Mathematics Subject Classification

Navigation