Skip to main content
Log in

New materials of Pliorhinus ringstroemi from the Linxia Basin (Late Miocene, eastern Asia) and their taxonomical and evolutionary implications

  • Research
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

A large collection of dicerorhine rhinoceros remains, here identified as Pliorhinus ringstroemi, were studied from the Late Miocene deposits of the Linxia Basin, eastern Asia. The new specimens include several complete skulls with for the first-time preserved premaxillae, providing new knowledge on the morphology and allowing a preliminary investigation of the intraspecific variation of the species. The morphological study supports Pliorhinus ringstroemi as a valid species and phylogenetic analyses place it as the sister group of P. megarhinus and P. miguelcrusafonti. Compared with P. megarhinus, the unique characters of P. ringstroemi include the better developed and oval I1, tusk-like i2, complex secondary folds on upper cheek teeth, convex base of the mandibular corpus, and slightly different skull shape as supported by the geometric morphometric study. Our findings confirm the gradual reduction of incisors, elongated nasal, retracted nasal notch, and, finally, a developed bony nasal septum previously reported for Dicerorhina. The early age and primitive traits suggest that Pliorhinus could have originated in Asia and migrated to Europe at the latest Miocene, taking the niche of closely related species Dihoplus pikermiensis in Europe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available in the text and supplementary online information files.

References

  • Abernethy AR (2011) Extreme variation in the sagittal crest of Tapirus polkensis (Mammalia Perissodactyla) at the Gray Fossil Site northeastern TN. Dissertation, Aaron Randall Abernethy

  • Adams DC, Otárola-Castillo E (2013) geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol 4:393–399

    Article  Google Scholar 

  • Antoine P-O, Saraç G (2005) Rhinocerotidae (Mammalia, Perissodactyla) from the late Miocene of Akkasdagi, Turkey. Geodiversitas 27(4):601–632

  • Arambourg C (1959) Vertébrés continentaux da Miocène supérieur de l’Afrique du Nord. Service de la Carte géologique de l’Algérie Mémoire.

  • Baken EK, Collyer ML, Kaliontzopoulou A, et al. (2021) geomorph v4.0 and gmShiny: Enhanced analytics and a new graphical interface for a comprehensive morphometric experience. Methods Ecol Evol 12:2355–2363

    Article  Google Scholar 

  • Bibi F (2013) A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol Biol 13:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen G, Wu W-Y (1976) Mammalian fossils from the Miocene Jiulongkou locality, Cixian County, Heibei Province. Vertebr PalAsiat 14:6–15

    Google Scholar 

  • Deng T (2004) A new species of the rhinoceros Alicornops from the Middle Miocene of the Linxia Basin, Gansu, China. Palaeontology 47:1427–1439

    Article  Google Scholar 

  • Deng T (2006) Neogene rhinoceroses of the Linxia Basin (Gansu, China). Cour Forsch-Inst Senckenberg 256:43–56

    Google Scholar 

  • Deng T (2009) Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vertebr PalAsiat 47:282–298

    Google Scholar 

  • Deng T, Hou S-K, Xie G-P, et al. (2013a) Chronostratigraphic subdivision and correlation of the Upper Miocene of the Linxia Basin in Gansu, China. J Stratigraphy 37:417–427

    Google Scholar 

  • Deng T, Qiu Z, Wang B, et al. (2013b) Late Cenozoic biostratigraphy of the Linxia Basin, northwestern China. In: Wang XM, Flynn LJ, Fortelius M (eds), Neogene Terrestrial Mammalian Biostratigraphy and Chronology of Asia. Columbia University Press, New York, pp 243–273

    Chapter  Google Scholar 

  • Deng T, Wang X, Fortelius M, et al. (2011) Out of Tibet: Pliocene wooly rhino suggests high-plateau origin of ice age megaherbivores. Science 333:1285–1288

    Article  CAS  PubMed  Google Scholar 

  • Geraads D (1988) Révision des Rhinocerotinae (Mammalia) du Turolien de Pikermi. Comparaison avec les formes voisins. Ann Paléontol 74:13–41

    Google Scholar 

  • Gervais P (1851) Memoire sur le Rhinoceros fossile a Montpellier suivi de quelques remarques sur l’ensemble des mammiferes ongules. Memories de la Section des Sciences, Academie des Sciences et Lettres de Montpellier 2:59–79

    Google Scholar 

  • Giaourtsakis IX (2003) Late Neogene Rhinocerotidae of Greece: distribution, diversity and stratigraphical range. In: Reumer JWF, Wessels W (eds), Distribution and Migration of Tertiary Mammals in Eurasia. Deinsea Rotterdam 10:235–253

  • Giaourtsakis IX (2022) The fossil record of rhinocerotids (Mammalia: Perissodactyla: Rhinocerotidae) in Greece. In: Vlachos E (ed), Fossil Vertebrates of Greece Vol. 2: Laurasiatherians, Artiodactyles, Perissodactyles, Carnivorans, and Island Endemics. Springer International Publishing, Cham, 409–500

  • Gilbert C, Ropiquet A, Hassanin A (2006) Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Mol Phylogenet Evol 40:101–117

    Article  CAS  PubMed  Google Scholar 

  • Giribet G (2005) TNT: tree analysis using new technology. Syst Biol 54:176–178

    Article  Google Scholar 

  • Goloboff PA, Catalano SA (2016) TNT version 1.5, including a full implementation of phylogenetic morphometrics. Cladistics 32:221–238

    Article  PubMed  Google Scholar 

  • Groves CP (1983) Phylogeny of the living species of rhinoceros. J Zoolog Syst Evol Res 21:293–313

    Article  Google Scholar 

  • Guérin C (1980) Les Rhinocéros (Mammalia, Perissodactyla) du Miocène terminal au Pléistocène supérieur en Europe occidentale. Comparaison avec les espèces actuelles. Documents du Laboratoire de Géologie, Université de Lyon, Sciences de la Terre 79:1−1184

  • Heissig K (1999) Family Rhinocerotidae. In: Rössner GE, Heissig K (eds) The Miocene Land Mammals of Europe. Pfeil, Munich, 175–188

    Google Scholar 

  • Hillman-Smith AKK, Owen-Smith N, Anderson JL, Hall-Martin, AJ, Selaladi JP (1986) Age estimation of the white rhinoceros (Ceratotherium simum). J Zoology 210:355–379

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Johnson WE, Eizirik E, Pecon-Slattery J, et al. (2006) The late Miocene radiation of modern Felidae: a genetic assessment. Science 311:73–77

    Article  CAS  PubMed  Google Scholar 

  • Li G, Davis BW, Eizirik E, et al. (2016) Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res 26:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  • Linden LV, Stoops K, Dumbá LCCS, et al. (2022) Sagittal crest morphology decoupled from relative bite performance in Pleistocene tapirs (Perissodactyla: Tapiridae). Integr Zool, 2023, 18(2):254–277

  • Liu S, Westbury MV, Dussex N, et al. (2021) Ancient and modern genomes unravel the evolutionary history of the rhinoceros family. Cell 184:4874–4885

    Article  CAS  PubMed  Google Scholar 

  • Owen-Smith RN (1988) Megaherbivores. The Influence of Very Large Body Size on Ecology. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511565441

    Book  Google Scholar 

  • Pandolfi L (2013) New and revised occurrences of Dihoplus megarhinus (Mammalia, Rhinocerotidae) in the Pliocene of Italy. Swiss J. Palaeontol 132:239–255

    Article  Google Scholar 

  • Pandolfi L (2023) Reassessing the phylogeny of Quaternary Eurasian Rhinocerotidae. J Quat Sci 38(3):1–4

  • Pandolfi L, Gasparik M, Piras P (2015) Earliest occurrence of “Dihoplus” megarhinus (Mammalia, Rhinocerotidae) in Europe (Late Miocene, Pannonian Basin, Hungary): Palaeobiogeographical and biochronological implications. Ann Paléontol 101:325–339

    Article  Google Scholar 

  • Pandolfi L, Pierre-Olivier A, Bukhsianidze M, et al. (2021) Northern Eurasian rhinocerotines (Mammalia, Perissodactyla) by the Pliocene–Pleistocene transition: phylogeny and historical biogeography. J Syst Palaeontol 19:1031–1057

    Article  Google Scholar 

  • Pandolfi L, Rook L (2017) Rhinocerotidae (Mammalia, Perissodactyla) from the latest Turolian localities (MN 13; Late Miocene) of central and northern Italy. Boll Soc Paleontol 56:45–56

    Google Scholar 

  • Qiu ZX, Wang BY (2007) Paracerathere Fossils of China. Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Ringström T (1924) Nashörner der Hipparion-Fauna Nord-Chinas. Palaeontol Sinica C 1(4):1–156

    Google Scholar 

  • Rohlf F (2010) tpsDIG2 Ver. 2.16. http://life.bio.sunysb.edu/morph/index.html

  • Ronquist F, Klopfstein S, Vilhelmsen L, et al. (2012a) A total-evidence approach to dating with fossils, applied to the early radiation of the hymenoptera. Syst Biol 61:973–999

    Article  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, et al. (2012b) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi B-Z, Chen S-K, Lu X-K, et al. (2023) First report on rhinoceros from the late Neogene Qin Basin of Shanxi, China. Anat Rec: 1–9

  • Tedford RH, Flynn LJ, Qiu Z, et al. (1991) Yushe Basin, China: paleomagnetically calibrated mammalian biostratigraphic standard for the Late Neogene of Eastern Asia. J Vertebr Paleontol 11:519–526

    Article  Google Scholar 

  • Tedford RH, Wang X, Taylor BE (2009) Phylogenetic systematics of the north american fossil caninae (Carnivora: Canidae). Bull Am Mus Nat Hist 325:1–218

    Article  Google Scholar 

  • Tong H-w (2012) Evolution of the non-Coelodonta dicerorhine lineage in China. C R Palevol 11:555–562

    Article  Google Scholar 

  • Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer, New York

    Book  Google Scholar 

  • Zhang C, Stadler T, Klopfstein S, et al. (2016) Total-evidence dating under the fossilized birth-death process. Syst Biol 65:228–249

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Second Comprehensive Scientific Expedition on the Tibetan Plateau for supporting the financial and logistical support in the field work. We thank J. Chen, W. He, S. Chen, L. Zhang for help in accessing fossil collections of the IVPP and HMV. We thank S. Liu and Y. Chen for artworks.

Funding

The present study is supported in fossil repairation and field work by National Key Research and Development Program of China (grant number 2023YFF0804501), the Chinese Natural Science Foundation Program (grant number 42102001), Key Frontier Science Research Program of the Chinese Academy of Sciences (grant number QYZDY-SSW-DQC-22).

Author information

Authors and Affiliations

Authors

Contributions

Shijie Li wrote the main manuscript text and prepared figures, Oscar Sanisidro and Tao Deng contributed significantly to analysis and manuscript preparation. Shiqi Wang and Rong Yang helped perform the analysis with constructive discussions. All authors contributed to the conception of the study and reviewed the manuscript.

Corresponding author

Correspondence to Tao Deng.

Ethics declarations

Ethical statement

The authors strictly followed ethical responsibilities.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sanisidro, O., Wang, S. et al. New materials of Pliorhinus ringstroemi from the Linxia Basin (Late Miocene, eastern Asia) and their taxonomical and evolutionary implications. J Mammal Evol 31, 6 (2024). https://doi.org/10.1007/s10914-023-09698-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10914-023-09698-w

Keywords

Navigation