Skip to main content

Advertisement

Log in

Mammalian Petrosals from the Upper Jurassic Morrison Formation (Utah, USA) Reveal Non-canonical Evolution of Middle and Inner Ear Characters

  • Original Paper
  • Published:
Journal of Mammalian Evolution Aims and scope Submit manuscript

Abstract

The Morrison Formation bears one of the most diverse assemblages of Late Jurassic terrestrial vertebrates worldwide. A recently discovered site in eastern Utah, the Cisco Mammal Quarry (CMQ), shows excellent preservation and small vertebrates (particularly mammals) collected thus far are very diverse. Two isolated petrosals from the CMQ, representing the same taxon, are described here based on CT data. Several plesiomorphic mammalian characters are present, including a horizontal crista interfenestralis, unfloored cavum supracochleare, a perilymphatic foramen, and an open perilymphatic groove. By contrast, a well-developed tractus foraminosus is present for distribution of cochlear nerve fibers and the cochlear endocast makes one full turn, as in early therians such as Prokennalestes. This latter derived condition is unrecorded in the Jurassic; the mammal fauna characteristic of the Morrison is dominated by docodontans, eutriconodontans, dryolestoids (dryolestids and paurodontids), and multituberculates. All currently-known examples of these high-level taxa possess a relatively short, straight or curved cochlea. Therians are not known from the Morrison Formation, but these petrosals invite comparison with some stem therians of South America, the meridiolestidans, which also bear a full coil, but differ from the Morrison petrosals in aspects of external morphology. While the taxonomic affinity of the specimens we describe here remains uncertain, the unique combination of petrosal characters is evidence that our current view of petrosal/inner ear evolution is oversimplified. With the presence of derived and plesiomorphic features character conflict is unavoidable, pointing to a complex interplay of external petrosal osteology under the influence of neurovascular and middle ear evolution and the (perhaps more independent) biophysical demands of inner ear function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

modified from Wible and Hopson 1993) and Dinnetherium (b, modified from Crompton and Luo 1993; Rougier et al. 1996); the docodontan Haldanodon (c, modified from Ruf et al. 2013); the eutriconodontan Priacodon (d, modified from Rougier et al. 1996); the possible gobiconodontid Khoobur 1 (e, modified from Wible and Hopson 1995); the multituberculate ?Catopsalis (f, modified from Wible and Hopson 1993); the meridiolestidan Cronopio (g, modified from Rougier et al. 2011); the stem therian Vincelestes (h, modified from Rougier et al. 1992); the basal eutherian Prokennalestes (i, modified from Wible et al. 2001); the dryolestid Dryolestes (j, modified from Luo et al. 2012); the CMQ petrosal OMNH 80536 (k). Abbreviations: ci, crista interfenestralis; cp, crista parotica; fc, fenestra cochleae; fv, fenestra vestibuli; jn, jugular notch; lt, lateral trough; pc, prootic canal; pp, paroccipital process; pr, promontorium; sff, secondary facial foramen

Similar content being viewed by others

References  

  • Alexander G (1904) Entwicklung und Bau des innerens Gehörorgans von Echidna aculeata. Semons Zoologische Forschungsreisen in Australien 3:1–118

    Google Scholar 

  • Allin EF and Hopson JA (1992) Evolution of the auditory system in Synapsida ("mammal-like reptiles" and primitive mammals) as seen in the fossil record. In: DB Webster, RR Fay, and AN Popper (eds), The Evolutionary Biology of Hearing, 587–614. Springer-Verlag, Inc., New York

    Google Scholar 

  • Averianov AO, Martin T (2015) Ontogeny and taxonomy of Paurodon valens (Mammalia, Cladotheria) from the Upper Jurassic Morrison Formation of USA. Proc ZIN 319:326–340

    Google Scholar 

  • Averianov AO, Lopatin AV, Martin T (2013) A new phylogeny for basal Trechnotheria and Cladotheria and affinities of South American endemic Late Cretaceous mammals. Naturwissenschaften 100:311–326. https://doi.org/10.1007/s00114-013-1028-3

    Article  CAS  PubMed  Google Scholar 

  • Bakker RT, Carpenter K (1990) A new latest Jurassic vertebrate fauna from the highest levels of the Morrison Formation at Como Bluff, Wyoming, with comments on Morrison biochronology. Part III. The mammals: a new multituberculate and a new paurodont. Hunteria 2:2–8

    Google Scholar 

  • Bast TH and Anson BJ (1949) The Temporal Bone and the Ear. Charles C. Thomas, Springfield

  • Bi S, Davis B, Meng J, Robinson N, Wang X, Zheng X (2016) A new symmetrodont mammal (Trechnotheria: Zhangheotheriidae) from the Early Cretaceous of China and trechnotherian character evolution. Sci Rep 6:26668. https://doi.org/10.1038/srep26668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bi S, Cignetti NE, Wang X, Wible JR, Yang S, Zheng X (2018) An Early Cretaceous eutherian and the placental–marsupial dichotomy. Nature 558:390–395. https://doi.org/10.1038/s41586-018-0210-3

  • Bonaparte JF (1992) Una nueva especie de Triconodonta (Mammalia) de la Formación Los Alamitos, Provincia de Río Negro y comentarios sobre su fauna de mamíferos. Ameghiniana 29:99–110

    Google Scholar 

  • Bonaparte JF (2008) On the phylogenetic relationships of Vincelestes neuquenianus. Hist Biol 20:81–86

    Google Scholar 

  • Bonaparte JF, Rougier GW (1987) Mamíferos del Cretácico Inferior de Patagonia. IV Congreso Latinamericano de Paleontología 1:343–359

    Google Scholar 

  • Bonaparte JF, Migale LA (2015) Protomamíferos y mamíferos Mesozoicos de América del Sur. Fundación de Historia Natural Felix de Azara, Buenos Aires

  • Butler PM (1939) The teeth of the Jurassic mammals. Proc Zool Soc Lond 109:329–356

    Google Scholar 

  • Butler PM, Ensom PC, Sigogneau-Russell D (2012) Possible persistence of the morganucodontans in the Lower Cretaceous Purbeck Limestone Group (Dorset, England). Cret Res 33:135–145. https://doi.org/10.1016/j.cretres.2011.09.007

    Article  Google Scholar 

  • Callison G (1987) Fruita: a place for wee fossils. In: Averett WR (ed) Paleontology and Geology of the Dinosaur Triangle. Museum of Western Colorado, Grand Junction, pp 91–96

  • Cifelli RL, Davis BM, Sames B (2014) Earliest Cretaceous mammals from the western United States. Acta Palaeontol Pol 59:31–52

    Google Scholar 

  • Crompton AW, Luo Z-X (1993) Relationships of the Liassic mammals Sinoconodon, Morganucodon, and Dinnetherium. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Volume 2—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, Inc., New York, pp 30–44

    Google Scholar 

  • Crompton AW, Hylander WL (1986) Changes in mandibular function following the acquisition of a dentary-squamosal joint. In: Hotton N, III, MacLean PD, Roth JJ, Roth EC (eds) The Ecology and Biology of Mammal-like Reptiles. Smithsonian Institution Press, Washington, D. C., pp 263–282

    Google Scholar 

  • Crompton AW, Bhullar B-AS, Miyamae JA, Musinsky C, Rougier GW (2018) Origin of the lateral wall of the mammalian skull: fossils, monotremes and therians revisited. J Mammal Evol 25:301–313. https://doi.org/10.1007/s10914-017-9388-7

    Article  Google Scholar 

  • Davis BM, Cifelli RL, Rougier GW (2018) A preliminary report of the fossil mammals from a new microvertebrate locality in the Upper Jurassic Morrison Formation, Grand County, Utah. Geol Intermountain West 5:1–8

    CAS  Google Scholar 

  • DeBeer GR (1937) The Development of the Vertebrate Skull. Clarendon Press, Oxford

    Google Scholar 

  • DeBeer GR (1929) IX. The development of the skull of the shrew. Philos Trans R Soc B Biol 326, 217:411–480. https://doi.org/10.1098/rstb.1929.0009

  • Denker A (1901) Zur Anatomie des Gehörorgans der Monotremata. Semon Zool. Forschungsreisen in Australien 3:635–662

    Google Scholar 

  • Ekdale EG (2016) Form and function of the mammalian inner ear. J Anat 228:324–337. https://doi.org/10.1111/joa.12308

    Article  PubMed  Google Scholar 

  • Engelmann GF, Callison G (1998) Mammalian faunas of the Morrison Formation. Mod Geol 23:343–379

    Google Scholar 

  • Ensom PC, Sigogneau-Russell D (2000) New symmetrodonts (Mammalia, Theria) from the Purbeck Limestone Group, Early Cretaceous of southern England. Cret Res 21:767–779

    Google Scholar 

  • Foster JR, Madsen SK, Martin JE, Trujillo KC (2006) The Late Jurassic mammal Docodon, from the Morrison Formation of the Black Hills, Wyoming: implications for abundance and biogeography of the genus. New Mexico Mus Nat Hist Sci Bull 36:165–169

    Google Scholar 

  • Fourie S (1974) The cranial morphology of Thrinaxodon liorhinus Seeley. Ann South African Mus 65:337–400

  • Gaetano LC, Abdala F (2015) The stapes of gomphodont cynodonts: Insights into the middle ear structure of non-mammaliaform cynodonts. PLoS ONE 10:e0131174. https://doi.org/10.1371/journal.pone.0131174

  • Hahn G (1988) Die Ohr-Region der Paulchoffatiidae (Multituberculata, Ober-Jura). Palaeovertebrata 18:155–185

    Google Scholar 

  • Harper T, Rougier GW (2019) Petrosal morphology and cochlear function in Mesozoic stem therians. PLoS ONE 14:e0209457. https://doi.org/10.1371/journal.pone.0209457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopson JA and Barghusen H (1986) An analysis of therapsid relationships. In: N. Hotton, III, P.D. MacLean, J.J. Roth, and E.C. Roth (eds), The Ecology and Biology of Mammal-like Reptiles, 83–106. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hopson JA, Rougier GW (1993) Braincase structure in the oldest known skull of a therian mammal: implications for mammalian systematics and cranial evolution. Am J Sci 293:268–299

    Google Scholar 

  • Hu Y-M, Li C-K, Luo Z-X, Wang Y-Q (1997) A new symmetrodont mammal from China and its implications for mammalian evolution. Nature 390:137–142

    CAS  PubMed  Google Scholar 

  • Hughes EM, Luo Z-X, Spaulding M, Wible JR, (2015) Mammalian petrosal from the Upper Jurassic Morrison Formation of Fruita, Colorado. Ann Carnegie Mus 83:1–17

    Google Scholar 

  • Hurum JH, Kielan-Jaworowska Z, Presley R (1996) The middle ear in multituberculate mammals. Acta Palaeontol Pol 41:253–275

    Google Scholar 

  • Huttenlocker AK, Grossnickle DM, Kirkland JI, Luo Z-X, Schultz JA (2018) Late-surviving stem mammal links the lowermost Cretaceous of North America and Gondwana. Nature. https://doi.org/10.1038/s41586-018-0126-y

    Article  PubMed  Google Scholar 

  • Jäger KRK, Luo Z-X, Martin T (2020) Postcranial skeleton of Henkelotherium guimarotae (Cladotheria, Mammalia) and locomotor adaptation. J Mammal Evol 27:349–372. https://doi.org/10.1007/s10914-018-09457-2

    Article  Google Scholar 

  • Jenkins FA, Jr., Crompton AW, Downs WR (1983) Mesozoic mammals from Arizona: new evidence on mammalian evolution. Science 222:1233–1235

    PubMed  Google Scholar 

  • Kemp TS (1983) The relationships of mammals. Zool J Linn Soc 77:353–384

    Google Scholar 

  • Kemp TS (2009) The endocranial cavity of a nonmammalian eucynodont, Chiniquodon theotenicus, and its implications for the origin of the mammalian brain. J Vertebr Paleontol 29:1188–1198. https://doi.org/10.1671/039.029.0430

    Article  Google Scholar 

  • Kemp TS (2016) Non-mammalian synapsids: the beginning of the mammal line. Springer Handbook Aud Res 59:107–137

    Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1973) The lower jaw of Morganucodon. J Linn Soc 53:87–175

    Google Scholar 

  • Kermack KA, Mussett F, Rigney HW (1981) The skull of Morganucodon. Zool J Linn Soc 71:1–158

    Google Scholar 

  • Kielan-Jaworowska Z (1986a) Brain evolution in Mesozoic mammals. Contributions to Geology, University of Wyoming, Special Paper 3:21–34

    Google Scholar 

  • Kielan-Jaworowska Z (1986b) Endocranial cast of the Cretaceous eutherian mammal Barunlestes. Acta Palaeontol Pol 31:137–144

    Google Scholar 

  • Kielan-Jaworowska Z, Poplin C, Presley R, (1986) The cranial vascular system in taeniolabidoid multituberculate mammals. Philos Trans R Soc B Biol 313:525–602

    Google Scholar 

  • Kielan-Jaworowska Z, Cifelli RL, Luo Z-X (2004) Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. Columbia University Press, New York

    Google Scholar 

  • Kirkland JI (2006) Fruita Palaeontological Area (Upper Jurassic, Morrison Formation), western Colorado: an example of terrestrial taphofacies analysis. New Mexico Mus Nat Hist Sci Bull 36:67–95

    Google Scholar 

  • Koyabu D, Endo H, Forasiepi AM, Kimura J, Morimoto N, Ohdachi SD, Sánchez-Villagra MR, Truong Son N, Werneburg I, Zollikofer CPE (2014) Mammalian skull heterochrony reveals modular evolution and a link between cranial development and brain size. Nat Commun 5:3625. https://doi.org/10.1038/ncomms4625

    Article  CAS  PubMed  Google Scholar 

  • Krause DW, Evans AR, Groenke JR, Hoffmann S, Hu Y, Kirk EC, Rahantarisoa LJ, Rogers RR, Rossie JB, Rougier GW, Schultz JA,  von Koenigswald W, Wible JR (2020) Skeleton of a Cretaceous mammal from Madagascar reflects long-term insularity. Nature. https://doi.org/10.1038/s41586-020-2234-8

    Article  PubMed  Google Scholar 

  • Krause DW, Hoffman S, Lyson TR, Dougan LG, Petermann H, Tecza A, Chester SGB, Miller IM (2021) New skull material of Taeniolabis taoensis (Multituberculata, Taeniolabididae) from the early Paleocene (Danian) of the Denver Basin, Colorado. J Mammal Evol.  https://doi.org/10.1007/s10914-021-09584-3

  • Krebs B (1991) Das Skelett von Henkelotherium guimarotae gen. et sp. nov. (Eupantotheria, Mammalia) aus dem Oberen Jura von Portugal. Berliner geowiss Abh 133:1–110

    Google Scholar 

  • Krusat G (1980) Contribução para o conhecimento da fauna do Kimeridgiano da mina de lignito Guimarota (Leiria, Portugal). IV Parte. Haldanodon exspectatus Kuhne & Krusat 1972 (Mammalia, Docodonta). Mem. Serv Geol De Port 27:1–79

    Google Scholar 

  • Ladevèze S, Muizon C de (2010) Evidence of early evolution of Australidelphia (Metatheria, Mammalia) in South America: phylogenetic relationships of the metatherians from the late Palaeocene of Itaboraí (Brazil) based on teeth and petrosal bones. Zool J Linn Soc 159:746–784. https://doi.org/10.1111/j.1096-3642.2009.00577.x

    Article  Google Scholar 

  • Li G, Luo Z-X (2006) A Cretaceous symmetrodont therian with some monotreme-like postcranial features. Nature 439:195–200

    CAS  PubMed  Google Scholar 

  • Lillegraven JA, Krusat G (1991) Cranio-mandibular anatomy of Haldanodon exspectatus (Docodonta; Mammalia) from the Late Jurassic of Portugal and its implications to the evolution of mammalian characters. Contri to Geol, UW 28:39–138

    Google Scholar 

  • Lillegraven JA, Hahn G (1993) Evolutionary analysis of the middle and inner ear of Late Jurassic multituberculates. J Mammal Evol 1:47–74

    Google Scholar 

  • Lopatin AV, Averianov AO, Leshchinskiy SV Maschenko EN, Reszvyi AS, Skutchas PP (2005) Early Cretaceous mammals from western Siberia. 1. Tinodontidae. Paleontologiceskij Zurnal 39:523–534

    Google Scholar 

  • Luo Z-X (2001) Inner ear and its bony housing in tritylodonts and implications for evolution of mammalian ear. In: Jenkins FA, Jr., Owerkowicz T, Shapiro MD (eds) Symposium in Honor of Professor Alfred W. Crompton. Bull Mus Comp Zool 155:621–637

  • Luo Z-X, Wible JR (2005) A Late Jurassic digging mammal and early mammalian diversification. Science 308:103–107

    CAS  PubMed  Google Scholar 

  • Luo Z-X, Ji Q, Yuan C-X (2011a) A Jurassic eutherian mammal and divergence of marsupials and placentals. Nature 476:442–445

    CAS  PubMed  Google Scholar 

  • Luo Z-X, Martin T, Ruf I, Schultz JA (2011b) Fossil evidence on evolution of inner ear cochlea in Jurassic mammals. Proc Royal Soc London 278:28–34

    Google Scholar 

  • Luo Z-X, Martin T, Ruf I (2012) The petrosal and inner ear of the Late Jurassic cladotherian mammal Dryolestes leiriensis and implications for ear evolution in therian mammals. Zool J Linn Soc 166:433–463. https://doi.org/10.1111/j.1096-3642.2012.00852.x

    Article  Google Scholar 

  • Luo Z-X, Ekdale EG, Schultz JA (2016) Evolution of the middle and inner ears of mammaliaforms: the approach to mammals. Springer Handbook Aud Res 59:139–174. https://doi.org/10.1007/978-3-319-46661-3_6

    Article  Google Scholar 

  • Luo Z-X, Grossnickle DM, Ji Q, Liu D, Meng Q-J, Neander AI, Zhang Y-G (2017) New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem. Nature 548:326–329. https://doi.org/10.1038/nature23483

    Article  CAS  PubMed  Google Scholar 

  • MacPhee RDE (1981) Auditory regions of primates and eutherian insectivores: morphology, ontogeny and character analysis. Contrib Primat 18:1–282

    Google Scholar 

  • Marsh OC (1877a) Notice of new dinosaurian reptiles from the Jurassic Formation. Am J Sci 14:514–516

    Google Scholar 

  • Marsh OC (1877b) Notice of a new and gigantic dinosaur. Am J Sci 14:87–88

    Google Scholar 

  • Marsh OC (1878) Fossil mammal from the Jurassic of the Rocky Mountains. Am J Sci 15:459

    Google Scholar 

  • Marshall LG, Muizon C, de (1995) Part II: The skull. In: Muizon C, de (ed) Pucadelphys andinus (Marsupialia, Mammalia) from the early Paleocene of Bolivia. Mémoires du Muséum National d'Histoire Naturelle 165, Paris, pp 21–90

  • Martin T (1999) Dryolestidae (Dryolestoidea, Mammalia) aus dem Oberen Jura von Portugal. Abh der Senck Naturf Gesell 550:1–119

    Google Scholar 

  • Martin T (2002) New stem-line representatives of Zatheria (Mammalia) from the Late Jurassic of Portugal. J Vertebr Paleontol 22:332–348

    Google Scholar 

  • Martin T, Averianov A, Jäger KRK, Schwermann AH, Wings O (2019) A large morganucodontan mammaliaform from the Late Jurassic of Germany. Foss Impr 75:504–509

    Google Scholar 

  • Martin T, Schultz J, Schwermann A, Wings O (2021) A derived dryolestid mammal indicates possible insular endemism in the Late Jurassic of Germany Sci Nat 108. https://doi.org/10.1007/s00114-021-01719-z

  • McDowell SB (1958) The Greater Antillean insectivores. Bull Am Mus Nat Hist 115:113–214

    Google Scholar 

  • Meng J, Fox RC (1995a) Osseous inner ear structures and hearing in early marsupials and placentals. Zool J Linn Soc 115:47–71

    Google Scholar 

  • Meng J, Fox RC (1995b) Therian petrosals from the Oldman and Milk River formations (Late Cretaceous), Alberta, Canada. J Vertebr Paleontol 15:122–130

    Google Scholar 

  • Meng J and Hou S (2016) Earliest known mammalian stapes from an Early Cretaceous eutriconodontan mammal and implications for transformation of mammalian middle ear. Palaeontol Pol 67:181–196

    Google Scholar 

  • Owen R (1871) Monograph of the fossil Mammalia of the Mesozoic formations. Monograph of the Palaeontological Soc 33:1–115

    Google Scholar 

  • Panciroli E, Luo Z-X, Schultz JA (2018) Morphology of the petrosal and stapes of Borealestes (Mammaliaformes, Docodonta) from the Middle Jurassic of Skye, Scotland. Pap Palaeontol. 5:139–156.https://doi.org/10.1002/spp2.1233

    Article  Google Scholar 

  • Pfaff C, Martin T, Ruf I (2015) Bony labyrinth morphometry indicates locomotor adaptations in the squirrel-related clade (Rodentia, Mammalia). Proc Royal Soc Lond B Biol 282

  • Presley R (1993) Development and phylogenetic features of the middle ear. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny: Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, New York, pp 21–29

    Google Scholar 

  • Prothero DR (1981) New Jurassic mammals from Como Bluff, Wyoming, and the interrelationships of non-tribosphenic Theria. Bull Am Mus Nat Hist 167:277–326

    Google Scholar 

  • Prothero DR (1983) The oldest mammalian petrosals from North America. J Paleontol 57:1040–1046

    Google Scholar 

  • Rougier GW (1993) Vincelestes neuquenianus Bonaparte (Mammalia, Theria) un Primitivo Mamífero del Cretácico Inferior de la Cuenca Neuquina. Dissertation, Universidad Nacional de Buenos Aires

  • Rougier GW, Wible JR (2006) Major changes in the ear region and basicranium of early mammals. In: Carrano MT, Gaudin TJ, Blob RW, Wible JR (eds) Amniote Paleobiology: Phylogenetic and Functional Perspectives on the Evolution of Mammals, Birds, and Reptiles. University of Chicago Press, Chicago, pp 269–311

    Google Scholar 

  • Rougier GW, Hopson JA, Wible JR (1992) Reconstruction of the cranial vessels in the Early Cretaceous mammal Vincelestes neuquenianus: implications for the evolution of the mammalian cranial system. J Vertebr Paleontol 12:188–216

    Google Scholar 

  • Rougier GW, Hopson JA, Wible JR (1996) Basicranial anatomy of Priacodon fruitaensis (Triconodontidae, Mammalia) from the Late Jurassic of Colorado, and a reappraisal of mammaliaform interrelationships. Am Mus Nov 3183:1–38

  • Rougier GW, Novacek MJ, Wible JR (1998) Implications of Deltatheridium specimens for early marsupial history. Nature 396:459–463

    CAS  PubMed  Google Scholar 

  • Rougier GW, McKenna MC, Novacek MJ, Wible JR (2001) Gobiconodonts from the Early Cretaceous of Oshih (Aisle), Mongolia. Am Mus Nov 3348: 1–30

  • Rougier GW, Ji Q, Novacek MJ (2003) A new symmetrodont mammal with fur impressions from the Mesozoic of China. Acta Geol Sin 77:7–14

    Google Scholar 

  • Rougier GW, Forasiepi AM, Hill RV, Novacek MJ (2009) New mammalian remains from the Late Cretaceous La Colonia Formation, Patagonia, Argentina. Acta Palaeontol Pol 54:195–212

    Google Scholar 

  • Rougier GW, Apesteguía S, Gaetano L (2011) Highly specialized mammalian skulls from the Late Cretaceous of South America. Nature 479:98–102

    CAS  PubMed  Google Scholar 

  • Rougier GW, Apesteguía S, Beck R, Wible JR (2012) The Miocene mammal Necrolestes demonstrates the survival of a Mesozoic non-therian lineage into the late Cenozoic of South America. Proc Nat Acad Sci USA 109: 20053–20058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rougier GW, Bolortsetseg M, Novacek MJ, Sheth AS, Spurlin BK (2016) Craniodental anatomy of a new Late Cretaceous multituberculate mammal from Udan Sayr, Mongolia. Palaeontol Pol 67:197–248

    Google Scholar 

  • Rougier GW, Forasiepi AM, Martinelli AG (2021a) Mesozoic Mammals from South America and Their Forerunners. Springer Nature, Switzerland

  • Rougier GW, Turazzinni GF, Cardozo MS, Harper T, Lires AI, Canessa LA (2021b) New specimens of Reigitherium bunodontum from the Late Cretaceous La Colonia Formation, Patagonia, Argentina and meridiolestidan diversity in South America. J Mammal Evol. https://doi.org/10.1007/s10914-021-09585-2

  • Ruf I, Luo Z-X, Martin T, Wible JR (2009) Petrosal anatomy and inner ear structures of the Late Jurassic Henkelotherium (Mammalia, Cladotheria, Dryolestoidea): insight into the early evolution of the ear region in cladotherian mammals. J Anat 214:679–693

    PubMed  PubMed Central  Google Scholar 

  • Ruf I, Luo Z-X, Martin T (2013) Reinvestigation of the basicranium of Haldanodon exspectatus (Mammaliaformes, Docodonta). J Vertebr Paleontol 33:382–400. https://doi.org/10.1080/02724634.2013.722575

    Article  Google Scholar 

  • Schultz JA, Luo Z-X, Zeller U (2016) Inner ear labyrinth anatomy of monotremes and implications for mammalian inner ear evolution. J Morphol 278:236–263. https://doi.org/10.1002/jmor.20632

    Article  PubMed  Google Scholar 

  • Segall W (1970) Morphological parallelisms of the bulla and auditory ossicles in some insectivores and marsupials. Fieldiana 51:169–205

    Google Scholar 

  • Sigogneau-Russell D, Ensom PC, Hooker JJ (2001) The oldest tribosphenic mammal from Laurasia (Purbeck Limestone Group, Berriasian, Cretaceous, UK) and its bearing on the "dual origin" of Tribosphenida. Comptes Rendus de l'Académie des Sciences 333:141–147

    Google Scholar 

  • Simpson GG (1928) A Catalogue of the Mesozoic Mammalia in the Geological Department of the British Museum. Trustees of the British Museum, London

    Google Scholar 

  • Simpson GG (1929) American Mesozoic Mammalia. Mem Peabody Mus 3:1–235

    Google Scholar 

  • Wible JR (1986) Transformation in the extracranial course of the internal carotid artery in mammalian phylogeny. J Vertebr Paleontol 6:313–325

    Google Scholar 

  • Wible JR (1987) The eutherian stapedial artery: character analysis and implications for superordinal relationships. Zool J Linn Soc 91:107–135

    Google Scholar 

  • Wible JR, Hopson JA (1993) Basicranial evidence for early mammal phylogeny. In: Szalay FS, Novacek MJ, McKenna MC (eds) Mammal Phylogeny, Volume 1—Mesozoic Differentiation, Multituberculates, Monotremes, Early Therians, and Marsupials. Springer-Verlag, Inc., New York, pp 45–62

    Google Scholar 

  • Wible JR, Hopson JA (1995) Homologies of the prootic canal in mammals and non-mammalian cynodonts. J Vertebr Paleontol 15:331–336

    Google Scholar 

  • Wible JR, Rougier GW (2000) The cranial anatomy of Kryptobaatar dashzevegi (Mammalia, Multituberculata), and its bearing on the evolution of mammalian characters. Bull Am Mus Nat Hist 247:1–124

    Google Scholar 

  • Wible JR, Rougier GW (2017) Craniomandibular anatomy of the subterranian meridolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the early Miocene of Patagonia. Ann Carnegie Mus 84:183–251

    Google Scholar 

  • Wible JR, Dashzeveg D, McKenna MC, Novacek MJ, Rougier GW (1995) A mammalian petrosal from the Early Cretaceous of Mongolia: implications for the evolution of the ear region and mammaliamorph relationships. Am Mus Nov 3149:1–19

  • Wible JR, McKenna MC, Novacek MJ, Rougier GW (2001) Earliest eutherian ear region: a petrosal of Prokennalestes from the Early Cretaceous of Mongolia. Am Mus Nov 3322:1–44

  • Zeller U (1985a) Die Ontogenese und Morphologie der Fenestra rotunda und des Aquaeductus cochleae von Tupaia und anderen Säugern. Gegenbaurs Morphol Jahrb, Leipzig 131:179–204

    CAS  Google Scholar 

  • Zeller U (1985b) The morphogenesis of the fenestra rotunda in mammals. Fort der Z 30:153–157

    Google Scholar 

  • Zeller U (1989) Die Enwicklung und Morphologie des Schädels von Ornithorhynchus anatinus (Mammalia: Prototheria: Monotremata). Abhandlungen der Senck Naturf Ges 545:1–188

    Google Scholar 

Download references

Acknowledgements

We dedicate this contribution to John Wible for his leadership in making JME a leading journal in our field and his monumental contributions to our understanding of the evolutionary patterns of the ear region throughout the history of mammals. Dr. Jessie Maisano (UTCT) obtained micro-CT data of the specimens in this study. We thank Simone Hoffmann and an anonymous reviewer for improvements to the manuscript. Funding for this project has come in part from a Discovery Pool grant to BMD from the Canyonlands Natural History Association (Moab, UT). This project has been partially supported by the ASNB Department (BMD and GWR) at the University of Louisville, Louisville, KY. CT scanning and data management support were provided by National Science Foundation grant FRES-1925896 to RLC. Additional support for GWR’s research was provided by PICT 2016 2682, a grant from the Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian M. Davis.

Ethics declarations

Competing Interests

GWR is an associate editor for the Journal of Mammalian Evolution but was not involved in the evaluation of this manuscript.

Availability of Data

CT data generated and analyzed for the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, B.M., Cifelli, R.L. & Rougier, G.W. Mammalian Petrosals from the Upper Jurassic Morrison Formation (Utah, USA) Reveal Non-canonical Evolution of Middle and Inner Ear Characters. J Mammal Evol 28, 1027–1049 (2021). https://doi.org/10.1007/s10914-021-09586-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10914-021-09586-1

Keywords

Navigation