Skip to main content
Log in

A novel chaos control strategy for discrete-time Brusselator models

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

This article deals with the dynamical analysis of discrete-time Brusselator models. Euler’s forward and nonstandard difference schemes are implemented for discretization of Brusselator system. We investigate the local dynamics related to equilibria of both discrete-time models. Furthermore, with the help of bifurcation theory and center manifold theorem, explicit parametric conditions for directions and existence of flip and Hopf bifurcations are investigated. A novel chaos control method is implemented in order to control chaos in discrete-time Brusselator models under the influence of flip and Hopf bifurcations. Numerical simulations are provided to illustrate theoretical discussion and effectiveness of newly introduced chaos control strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. I.R. Epstein, J.A. Pojman, An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos (Oxford University Press, New York, 1998)

    Google Scholar 

  2. R.J. Field, L. Gyorgyi, Chaos in Chemistry and Biochemistry (World Scientific Publishing Company, Singapore, 1993)

    Book  Google Scholar 

  3. B.P. Belousov, Collection of Short Papers on Radiation Medicine (Medical Publisher, Moscow, 1959), p. 145

    Google Scholar 

  4. A.M. Zhabotinsky, Periodical process of oxidation of malonic acid solution (a study of the Belousov reaction kinetics). Biofizika 9, 306–311 (1964)

    Google Scholar 

  5. A.M. Zhabotinsky, Periodic liquid phase reactions. Proc. Acad. Sci. USSR 157, 392–395 (1964)

    Google Scholar 

  6. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  7. G. Nicolis, I. Prigogine, Self-Organizations in Non-equilibrium Systems (Wiley-Interscience, New York, 1977)

    Google Scholar 

  8. P. Gray, S.K. Scott, The Brusselator model of oscillatory reactions. J. Chem. Soc. Faraday Trans. I 84(4), 993–1012 (1988)

    Article  CAS  Google Scholar 

  9. G.C. Layek, An Introduction to Dynamical Systems and Chaos (Springer, New Delhi, 2015)

    Book  Google Scholar 

  10. J.D. Murray, Mathematical Biology (Springer, New York, 1989)

    Book  Google Scholar 

  11. R.P. Agarwal, P.J.Y. Wong, Advance Topics in Difference Equations (Kluwer, Dordrecht, 1997)

    Book  Google Scholar 

  12. R. Kapral, Discrete models for chemically reacting systems. J. Math. Chem. 6(1), 113–163 (1991)

    Article  CAS  Google Scholar 

  13. R.K. Pearson, Discrete-Time Dynamic Models: Topics in Chemical Engineering (Oxford University Press, Oxford, 1999)

    Google Scholar 

  14. C.A. Floudas, X. Lin, Continuous-time versus discrete-time approaches for scheduling of chemical processes: a review. Comput. Chem. Eng. 28, 2109–2129 (2004)

    Article  CAS  Google Scholar 

  15. H. Kang, Y. Pesin, Dynamics of a discrete Brusselator model: escape to infinity and Julia set. Milan J. Math. 73(1), 1–17 (2005)

    Article  Google Scholar 

  16. Z. Zafar, K. Rehan, M. Mushtaq, M. Rafiq, Numerical treatment for nonlinear Brusselator chemical model. J. Differ. Equ. Appl. 23(3), 521–538 (2017)

    Article  Google Scholar 

  17. A. Sanayei, Controlling chaotic forced Brusselator chemical reaction, in Proceedings of WCE, London, UK (2010)

  18. L. Xu, L.J. Zhao, Z.X. Chang, J.T. Feng, G. Zhang, Turing instability and pattern formation in a semi-discrete Brusselator model. Mod. Phys. Lett. B 27(1), 1350006 (2013)

    Article  CAS  Google Scholar 

  19. P. Yu, A.B. Gumel, Bifurcation and stability analyses for a coupled Brusselator model. J. Sound Vib. 244(5), 795–820 (2001)

    Article  Google Scholar 

  20. A.A. Golovin, B.J. Matkowsky, V.A. Volpert, Turing pattern formation in the Brusselator model with superdiffusion. SIAM J. Appl. Math. 69(1), 251–272 (2008)

    Article  Google Scholar 

  21. A.V. Dernov, Regular dynamics and diffusion chaos in the Brusselator model. Differ. Equ. 37(11), 1631–1633 (2001)

    Article  Google Scholar 

  22. M. Ma, J. Hu, Bifurcation and stability analysis of steady states to a Brusselator model. Appl. Math. Comput. 236, 580–592 (2014)

    Google Scholar 

  23. J.C. Tzou, B.J. Matkowsky, V.A. Volpert, Interaction of turing and Hopf modes in the superdiffusive Brusselator model. Appl. Math. Lett. 22, 1432–1437 (2009)

    Article  Google Scholar 

  24. Z. Lin, R. Ruiz-Baier, C. Tian, Finite volume element approximation of an inhomogeneous Brusselator model with cross-diffusion. J. Comput. Phys. 256, 806–823 (2014)

    Article  Google Scholar 

  25. J. Zhou, C. Mu, Pattern formation of a coupled two-cell Brusselator model. J. Math. Anal. Appl. 366, 679–693 (2010)

    Article  Google Scholar 

  26. Q. Bie, Pattern formation in a general two-cell Brusselator model. J. Math. Anal. Appl. 376, 551–564 (2011)

    Article  Google Scholar 

  27. M.S.H. Chowdhury, T.H. Hassan, S. Mawa, A new application of homotopy perturbation method to the reaction-diffusion Brusselator model. Procedia Soc. Behav. Sci. 8, 648–653 (2010)

    Article  Google Scholar 

  28. V.V. Osipov, E.V. Ponizovskaya, Stochastic resonance in the Brusselator model. Phys. Rev. E 61(4), 4603–4605 (2000)

    Article  CAS  Google Scholar 

  29. T. Biancalani, T. Galla, A.J. McKane, Stochastic waves in a Brusselator model with nonlocal interaction. Phys. Rev. E 84, 026201 (2011)

    Article  CAS  Google Scholar 

  30. A.-M. Wazwaz, The decomposition method applied to systems of partial differential equations and to the reaction-diffusion Brusselator model. Appl. Math. Comput. 110, 251–264 (2000)

    Google Scholar 

  31. P.V. Kuptsov, S.P. Kuznetsov, E. Mosekilde, Particle in the Brusselator model with flow. Physica D 163, 80–88 (2002)

    Article  CAS  Google Scholar 

  32. S.H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison-Wesley, New York, 1994)

    Google Scholar 

  33. Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)

    Article  CAS  Google Scholar 

  34. Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlorine dioxide–iodine–malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)

    Google Scholar 

  35. Z. He, X. Lai, Bifurcation and chaotic behavior of a discrete-time predator–prey system. Nonlinear Anal. RWA 12, 403–417 (2011)

    Article  Google Scholar 

  36. Z. Jing, J. Yang, Bifurcation and chaos in discrete-time predator–prey system. Chaos Soliton Fractals 27, 259–277 (2006)

    Article  Google Scholar 

  37. X. Liu, D. Xiao, Complex dynamic behaviors of a discrete-time predator–prey system. Chaos Soliton Fractals 32, 80–94 (2007)

    Article  Google Scholar 

  38. H.N. Agiza, E.M. ELabbasy, H. EL-Metwally, A.A. Elsadany, Chaotic dynamics of a discrete prey–predator model with Holling type II. Nonlinear Anal. RWA 10, 116–129 (2009)

    Article  Google Scholar 

  39. B. Li, Z. He, Bifurcations and chaos in a two-dimensional discrete Hindmarsh–Rose model. Nonlinear Dyn. 76(1), 697–715 (2014)

    Article  Google Scholar 

  40. L.-G. Yuan, Q.-G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator–prey system. Appl. Math. Model. 39(8), 2345–2362 (2015)

    Article  Google Scholar 

  41. J. Carr, Application of Center Manifold Theory (Springer, New York, 1981)

    Book  Google Scholar 

  42. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

    Book  Google Scholar 

  43. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos (CRC Press, Boca Raton, 1999)

    Google Scholar 

  44. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

    Google Scholar 

  45. Y.H. Wan, Computation of the stability condition for the Hopf bifurcation of diffeomorphism on \(R^2\). SIAM J. Appl. Math. 34, 167–175 (1978)

    Article  Google Scholar 

  46. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1997)

    Google Scholar 

  47. G. Chen, J. Fang, Y. Hong, H. Qin, Controlling Hopf bifurcations: discrete-time systems. Discrete Dyn. Nat. Soc. 5, 29–33 (2000)

    Article  Google Scholar 

  48. G. Chen, X. Yu, On time-delayed feedback control of chaotic systems. IEEE Trans. Circuits Syst. 46, 767–772 (1999)

    Article  Google Scholar 

  49. E.H. Abed, H.O. Wang, R.C. Chen, Stabilization of period-doubling bifurcation and implications for control of chaos. Physica D 70, 154–164 (1994)

    Article  Google Scholar 

  50. G.L. Wen, D.L. Xu, J.H. Xie, Controlling Hopf bifurcations of discrete-time systems in resonance. Chaos Soliton Fractals 23, 1865–1877 (2005)

    Article  Google Scholar 

  51. X.S. Luo, G.R. Chen, B.H. Wang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fractals 18, 775–783 (2003)

    Article  Google Scholar 

  52. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    Article  CAS  PubMed  Google Scholar 

  53. F.J. Romeiras, C. Grebogi, E. Ott, W.P. Dayawansa, Controlling chaotic dynamical systems. Physica D 58, 165–192 (1992)

    Article  Google Scholar 

  54. K. Ogata, Modern Control Engineering, 2nd edn. (Prentice-Hall, Englewood, 1997)

    Google Scholar 

  55. X. Zhang, Q.L. Zhang, V. Sreeram, Bifurcation analysis and control of a discrete harvested prey–predator system with Beddington–DeAngelis functional response. J. Frankl. Inst. 347, 1076–1096 (2010)

    Article  Google Scholar 

  56. J.L. Ren, L.P. Yu, Codimension-two bifurcation, chaos and control in a discrete-time information diffusion model. J. Nonlinear Sci. 26, 1895–1931 (2016)

    Article  Google Scholar 

  57. Q. Din, Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)

    Article  Google Scholar 

  58. Q. Din, Ö.A. Gümüş, H. Khalil, Neimark–Sacker bifurcation and chaotic behaviour of a modified Host-Parasitoid model. Z. Naturforsch. A 72(1), 25–37 (2017)

    Article  CAS  Google Scholar 

  59. Q. Din, Controlling chaos in a discrete-time prey-predator model with Allee effects. Int. J. Dyn. Control 6(2), 858–872 (2018)

    Article  Google Scholar 

  60. Q. Din, Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)

    Article  Google Scholar 

  61. Q. Din, A.A. Elsadany, S. Ibrahim, Bifurcation analysis and chaos control in a second-order rational difference equation. Int. J. Nonlinear Sci. Numer. 19(1), 53–68 (2018)

    Article  Google Scholar 

  62. Q. Din, M. Hussain, Controlling chaos and Neimark--Sacker bifurcation in a Host--Parasitoid model. Asain J. Control (2018). https://doi.org/10.1002/asjc.1809

    Article  Google Scholar 

  63. S. Lynch, Dynamical Systems with Applications Using Mathematica (Birkhäuser, Boston, 2007)

    Google Scholar 

Download references

Acknowledgements

The author thanks the main editor and anonymous referees for their valuable comments and suggestions leading to improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Din.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Q. A novel chaos control strategy for discrete-time Brusselator models. J Math Chem 56, 3045–3075 (2018). https://doi.org/10.1007/s10910-018-0931-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-018-0931-4

Keywords

Navigation