Skip to main content
Log in

A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A predictor–corrector explicit four-step method of sixth algebraic order is investigated in this paper. More specifically, we investigate the results of the elimination of the phase-lag and its first, second and third derivatives on the efficiency of the proposed method. The resultant method is studied theoretically and computationally. The theoretical investigation of the new hybrid method consists of: (1) the construction of the new method, (2) the definition (calculation) of the local truncation error, (3) the comparative local truncation error analysis (with other known methods of the same form), (4) the stability analysis using scalar test equation with frequency different than the frequency of the phase-lag analysis. Finally, we will study computationally the new obtained method. This study is based on the application of the new produced predictor–corrector explicit four-step method to the approximate solution of the resonance problem of the radial time independent Schrödinger equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. Where \(S\) is a set of distinct points.

  2. With the term classical we mean the method of Sect. 4 with constant coefficients.

  3. The reference values are computed using the well known two-step method of Chawla and Rao [24] with small step size for the integration.

References

  1. L.G. Ixaru, M. Micu, Topics in Theoretical Physics (Central Institute of Physics, Bucharest, 1978)

    Google Scholar 

  2. L.D. Landau, F.M. Lifshitz, Quantum Mechanics (Pergamon, New York, 1965)

    Google Scholar 

  3. I. Prigogine, Stuart Rice (eds.), Advances in Chemical Physics. Vol. 93: New Methods in Computational Quantum Mechanics (Wiley, London, 1997)

    Google Scholar 

  4. G. Herzberg, Spectra of Diatomic Molecules (Van Nostrand, Toronto, 1950)

    Google Scholar 

  5. T.E. Simos, J. Vigo-Aguiar, A modified phase-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. J. Math. Chem. 30(1), 121–131 (2001)

    Article  CAS  Google Scholar 

  6. K. Tselios, T.E. Simos, Runge–Kutta methods with minimal dispersion and dissipation for problems arising from computational acoustics. J. Comput. Appl. Math. 175(1), 173–181 (2005)

    Article  Google Scholar 

  7. Z.A. Anastassi, T.E. Simos, An optimized Runge–Kutta method for the solution of orbital problems. J. Comput. Appl. Math. 175(1), 1–9 (2005)

    Article  Google Scholar 

  8. D.F. Papadopoulos, T.E. Simos, A new methodology for the construction of optimized Runge–Kutta-Nyström methods. Int. J. Mod. Phys. C 22(6), 623–634 (2011)

    Article  Google Scholar 

  9. Dimitris F. Papadopoulos, T.E. Simos, A modified Runge–Kutta-Nyström method by using phase lag properties for the numerical solution of orbital problems. Appl. Math. Inf. Sci. 7(2), 433–437 (2013)

    Article  Google Scholar 

  10. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic Runge–Kutta-Nyström methods. Appl. Math. Inf. Sci. 7(1), 81–85 (2013)

    Article  Google Scholar 

  11. A.A. Kosti, Z.A. Anastassi, T.E. Simos, Construction of an optimized explicit Runge–Kutta-Nyström method for the numerical solution of oscillatory initial value problems. Comput. Math. Appl. 61(11), 3381–3390 (2011)

    Article  Google Scholar 

  12. A.A. Kosti, Z.A. Anastassi, T.E. Simos, An optimized explicit Runge–Kutta method with increased phase-lag order for the numerical solution of the Schrödinger equation and related problems. J. Math. Chem. 47(1), 315–330 (2010)

    Article  CAS  Google Scholar 

  13. Z. Kalogiratou, T.E. Simos, Construction of trigonometrically and exponentially fitted Runge–Kutta-Nyström methods for the numerical solution of the Schrödinger equation and related problems a method of 8th algebraic order. J. Math. Chem 31(2), 211–232 (2002)

    Article  CAS  Google Scholar 

  14. T.E. Simos, A fourth algebraic order exponentially-fitted Runge–Kutta method for the numerical solution of the Schrödinger equation. IMA J. Numer. Anal. 21(4), 919–931 (2001)

    Article  Google Scholar 

  15. T.E. Simos, Exponentially-fitted Runge–Kutta-Nyström method for the numerical solution of initial-value problems with oscillating solutions. Appl. Math. Lett. 15(2), 217–225 (2002)

    Article  Google Scholar 

  16. Ch. Tsitouras, T.E. Simos, Optimized Runge–Kutta pairs for problems with oscillating solutions. J. Comput. Appl. Math. 147(2), 397–409 (2002)

    Article  Google Scholar 

  17. Z.A. Anastassi, T.E. Simos, Trigonometrically fitted Runge–Kutta methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 281–293 (2005)

    Article  CAS  Google Scholar 

  18. Z.A. Anastassi, T.E. Simos, A family of exponentially-fitted Runge–Kutta methods with exponential order up to three for the numerical solution of the Schrödinger equation. J. Math. Chem. 41(1), 79–100 (2007)

    Article  CAS  Google Scholar 

  19. J.D. Lambert, I.A. Watson, Symmetric multistep methods for periodic initial values problems. J. Inst. Math. Appl. 18, 189–202 (1976)

    Article  Google Scholar 

  20. G.D. Quinlan, S. Tremaine, Symmetric multistep methods for the numerical integration of planetary orbits. Astron. J. 100, 1694–1700 (1990)

    Article  Google Scholar 

  21. Ch. Tsitouras, ITh Famelis, T.E. Simos, On modified Runge–Kutta trees and methods. Comput. Math. Appl. 62(4), 2101–2111 (2011)

    Article  Google Scholar 

  22. http://burtleburtle.net/bob/math/multistep.html

  23. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 1. Development of the basic method. J. Math. Chem. 29(4), 281–291 (2001)

    Article  CAS  Google Scholar 

  24. M.M. Chawla, P.S. Rao, An explicit sixth-order method with phase-lag of order eight for \(y^{\prime \prime }=f(t, y)\). J. Comput. Appl. Math. 17, 363–368 (1987)

    Google Scholar 

  25. M.M. Chawla, P.S. Rao, An Noumerov-typ method with minimal phase-lag for the integration of second order periodic initial-value problems II Explicit Method. J. Comput. Appl. Math. 15, 329–337 (1986)

    Article  Google Scholar 

  26. T.E. Simos, P.S. Williams, A finite difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79, 189–205 (1997)

    Article  Google Scholar 

  27. G. Avdelas, A. Konguetsof, T.E. Simos, A generator and an optimized generator of high-order hybrid explicit methods for the numerical solution of the Schrödinger equation. Part 2. Development of the generator; optimization of the generator and numerical results. J. Math. Chem. 29(4), 293–305 (2001)

    Article  CAS  Google Scholar 

  28. T.E. Simos, J. Vigo-Aguiar, Symmetric eighth algebraic order methods with minimal phase-lag for the numerical solution of the Schrödinger equation. J. Math. Chem. 31(2), 135–144 (2002)

    Article  CAS  Google Scholar 

  29. A. Konguetsof, T.E. Simos, A generator of hybrid symmetric four-step methods for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 93–106 (2003)

    Article  Google Scholar 

  30. T.E. Simos, I.T. Famelis, C. Tsitouras, Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions. Numer. Algorithms 34(1), 27–40 (2003)

    Article  Google Scholar 

  31. D.P. Sakas, T.E. Simos, Multiderivative methods of eighth algrebraic order with minimal phase-lag for the numerical solution of the radial Schrödinger equation. J. Comput. Appl. Math. 175(1), 161–172 (2005)

    Article  Google Scholar 

  32. Theodore E. Simos, Optimizing a class of linear multi-step methods for the approximate solution of the radial Schrödinger equation and related problems with respect to phase-lag. Central Eur. J. Phys. 9(6), 1518–1535 (2011)

    Article  Google Scholar 

  33. D.P. Sakas, T.E. Simos, A family of multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 37(3), 317–331 (2005)

    Article  CAS  Google Scholar 

  34. Hans Van de Vyver, Phase-fitted and amplification-fitted two-step hybrid methods for \(y^{\prime \prime }=f(x, y)\). J. Comput. Appl. Math. 209(1), 33–53 (2007)

    Article  Google Scholar 

  35. Hans Van de Vyver, An explicit Numerov-type method for second-order differential equations with oscillating solutions. Comput. Math. Appl. 53, 1339–1348 (2007)

    Article  Google Scholar 

  36. T.E. Simos, A new Numerov-type method for the numerical solution of the Schrödinger equation. J. Math. Chem. 46(3), 981–1007 (2009)

    Article  CAS  Google Scholar 

  37. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related orbital problems. Int. J. Mod. Phys. C 22(2), 133–153 (2011)

    Article  Google Scholar 

  38. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A symmetric eight-step predictor–corrector method for the numerical solution of the radial Schrödinger equation and related IVPs with oscillating solutions. Comput. Phys. Commun. 182(8), 1626–1637 (2011)

    Article  CAS  Google Scholar 

  39. T.E. Simos, Optimizing a hybrid two-step method for the numerical solution of the Schrödinger equation and related problems with respect to phase-lag. J. Appl. Math. Article ID 420387 (2012)

  40. T.E. Simos, A two-step method with vanished phase-lag and its first two derivatives for the numerical solution of the Schrödinger equation. J. Math. Chem. 49(10), 2486–2518 (2011)

    Article  CAS  Google Scholar 

  41. Ibraheem Alolyan, T.E. Simos, A family of high-order multistep methods with vanished phase-lag and its derivatives for the numerical solution of the Schrödinger equation. Comput. Math. Appl. 62(10), 3756–3774 (2011)

    Article  Google Scholar 

  42. Ibraheem Alolyan, T.E. Simos, A new four-step hybrid type method with vanished phase-lag and its first derivatives for each level for the approximate integration of the Schrödinger equation. J. Math. Chem. 51, 2542–2571 (2013)

    Article  CAS  Google Scholar 

  43. Ibraheem Alolyan, T.E. Simos, A Runge–Kutta type four-step method with vanished phase-lag and its first and second derivatives for each level for the numerical integration of the Schrödinger equation. J. Math. Chem. 52, 917–947 (2014)

    Article  CAS  Google Scholar 

  44. I. Alolyan, Z.A. Anastassi, T.E. Simos, A new family of symmetric linear four-step methods for the efficient integration of the Schrödinger equation and related oscillatory problems. Appl. Math. Comput. 218(9), 5370–5382 (2012). Z. A.

    Article  Google Scholar 

  45. Z.A. Anastassi, T.E. Simos, A parametric symmetric linear four-step method for the efficient integration of the Schrödinger equation and related oscillatory problems. J. Comput. Appl. Math. 236(16), 3880–3889 (2012)

    Article  Google Scholar 

  46. G.A. Panopoulos, T.E. Simos, An optimized symmetric 8-step semi-embedded predictor–corrector method for IVPs with oscillating solutions. Appl. Math. Inf. Sci. 7(1), 73–80 (2013)

    Article  Google Scholar 

  47. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, A new eight-step symmetric embedded predictor–corrector method (EPCM) for orbital problems and related IVPs with oscillatory solutions. Astron. J. 145(3). Article Number: 75 2013. doi:10.1088/0004-6256/145/3/75

  48. T.E. Simos, New high order multiderivative explicit four-step methods with vanished phase-lag and its derivatives for the approximate solution of the Schrödinger equation. Construction and theoretical analysis. J. Math. Chem. 51(1), 194–226 (2013)

    Article  CAS  Google Scholar 

  49. T.E. Simos, On the explicit four-step methods with vanished phase-lag and its first derivative. Appl. Math. Inf. Sci. 8(2), 447–458 (2014)

    Article  Google Scholar 

  50. G.A. Panopoulos, T.E. Simos, A new optimized symmetric embedded predictor–corrector method (EPCM) for initial-value problems with oscillatory solutions. Appl. Math. Inf. Sci. 8(2), 703–713 (2014)

    Article  Google Scholar 

  51. A. Konguetsof, A new two-step hybrid method for the numerical solution of the Schrödinger equation. J. Math. Chem. 47(2), 871–890 (2010)

    Article  CAS  Google Scholar 

  52. K. Tselios, T.E. Simos, Symplectic methods for the numerical solution of the radial Shrödinger equation. J. Math. Chem. 34(1–2), 83–94 (2003)

    Article  CAS  Google Scholar 

  53. K. Tselios, T.E. Simos, Symplectic methods of fifth order for the numerical solution of the radial Shrodinger equation. J. Math. Chem. 35(1), 55–63 (2004)

    Article  CAS  Google Scholar 

  54. T. Monovasilis, T.E. Simos, New second-order exponentially and trigonometrically fitted symplectic integrators for the numerical solution of the time-independent Schrödinger equation. J. Math. Chem. 42(3), 535–545 (2007)

    Article  CAS  Google Scholar 

  55. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 37(3), 263–270 (2005)

    Article  CAS  Google Scholar 

  56. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Trigonometrically fitted and exponentially fitted symplectic methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 40(3), 257–267 (2006)

    Article  CAS  Google Scholar 

  57. Z. Kalogiratou, T. Monovasilis, T.E. Simos, Symplectic integrators for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 158(1), 83–92 (2003)

    Article  Google Scholar 

  58. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high-order for long-time integration of orbital problems. Appl. Math. Lett. 22(10), 1616–1621 (2009)

    Article  Google Scholar 

  59. Z. Kalogiratou, T.E. Simos, Newton–Cotes formulae for long-time integration. J. Comput. Appl. Math. 158(1), 75–82 (2003)

    Article  Google Scholar 

  60. T.E. Simos, High order closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Appl. Math. Comput. 209(1), 137–151 (2009)

    Article  Google Scholar 

  61. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for the solution of the Schrödinger equation. MATCH Commun. Math. Comput. Chem. 60(3), 787–801 (2008)

    CAS  Google Scholar 

  62. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae of high order for the numerical integration of the Schrödinger equation. J. Math. Chem. 44(2), 483–499 (2008)

    Article  CAS  Google Scholar 

  63. T.E. Simos, High-order closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. Comput. Phys. Commun. 178(3), 199–207 (2008)

    Article  CAS  Google Scholar 

  64. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for numerical integration of the Schrödinger equation. Comput. Lett. 3(1), 45–57 (2007)

    Article  Google Scholar 

  65. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration of orbital problems. RevMexAA 42(2), 167–177 (2006)

    Google Scholar 

  66. T.E. Simos, Closed Newton–Cotes trigonometrically-fitted formulae for long-time integration. Int. J. Mod. Phys. C 14(8), 1061–1074 (2003)

    Article  Google Scholar 

  67. T.E. Simos, New closed Newton–Cotes type formulae as multilayer symplectic integrators. J. Chem. Phys. 133(10). Article Number: 104108 (2010)

  68. T.E. Simos, New stable closed Newton–Cotes trigonometrically fitted formulae for long-time integration. Abstr. Appl. Anal. (2012). Article Number: 182536. doi:10.1155/2012/182536

  69. T.E. Simos, High order closed Newton–Cotes exponentially and trigonometrically fitted formulae as multilayer symplectic integrators and their application to the radial Schrödinger equation. J. Math. Chem. 50(5), 1224–1261 (2012)

    Article  CAS  Google Scholar 

  70. T.E. Simos, Accurately closed Newton–Cotes trigonometrically-fitted formulae for the numerical solution of the Schrödinger equation. Int. J. Mod. Phys. C 24(3) (2013). doi:10.1142/S0129183113500149

  71. T.E. Simos, New open modified Newton Cotes type formulae as multilayer symplectic integrators. Appl. Math. Model. 37(4), 1983–1991 (2013)

    Article  Google Scholar 

  72. G.Vanden Berghe, M. Van Daele, Exponentially fitted open Newton–Cotes differential methods as multilayer symplectic integrators. J. Chem. Phys. 132, 204107 (2010)

    Article  CAS  Google Scholar 

  73. Z. Kalogiratou, T. Monovasilis, T.E. Simos, A fifth-order symplectic trigonometrically fitted partitioned Runge–Kutta method. in International Conference on Numerical Analysis and Applied Mathematics, SEP 16–20, 2007 Corfu, Greece, Numerical Analysis and Applied Mathematics, AIP Conference Proceedings vol. 936, pp. 313–317 (2007)

  74. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Families of third and fourth algebraic order trigonometrically fitted symplectic methods for the numerical integration of Hamiltonian systems. Comput. Phys. Commun. 177(10), 757–763 (2007)

    Article  CAS  Google Scholar 

  75. T. Monovasilis, T.E. Simos, Symplectic methods for the numerical integration of the Schrödinger equation. Comput. Mater. Sci. 38(3), 526–532 (2007)

    Article  CAS  Google Scholar 

  76. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Computation of the eigenvalues of the Schrödinger equation by symplectic and trigonometrically fitted symplectic partitioned Runge-Kutta methods. Phys. Lett. A 372(5), 569–573 (2008)

    Article  CAS  Google Scholar 

  77. Z. Kalogiratou, Th Monovasilis, T.E. Simos, New modified Runge–Kutta-Nyström methods for the numerical integration of the Schrödinger equation. Comput. Math. Appl. 60(6), 1639–1647 (2010)

    Article  Google Scholar 

  78. Th Monovasilis, Z. Kalogiratou, T.E. Simos, A family of trigonometrically fitted partitioned Runge–Kutta symplectic methods. Appl. Math. Comput. 209(1), 91–96 (2009)

    Article  Google Scholar 

  79. Th Monovasilis, Z. Kalogiratou, T.E. Simos, Two new phase-fitted symplectic partitioned Runge–Kutta methods. Int. J. Mod. Phys. C 22(12), 1343–1355 (2011)

    Article  Google Scholar 

  80. Kostas Tselios, T.E. Simos, Optimized fifth order symplectic integrators for orbital problems. Rev. Mex. Astron. Astrofis. 49(1), 11–24 (2013)

    Google Scholar 

  81. T. Monovasilis, Z. Kalogiratou, T.E. Simos, Symplectic partitioned Runge–Kutta methods with minimal phase-lag. Comput. Phys. Commun. 181(7), 1251–1254 (2010)

    Article  CAS  Google Scholar 

  82. LGr Ixaru, M. Rizea, A Numerov-like scheme for the numerical solution of the Schrödinger equation in the deep continuum spectrum of energies. Comput. Phys. Commun. 19, 23–27 (1980)

    Article  Google Scholar 

  83. A.D. Raptis, A.C. Allison, Exponential-fitting methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 14, 1–5 (1978)

    Article  Google Scholar 

  84. J. Vigo-Aguiar, T.E. Simos, Family of twelve steps exponential fitting symmetric multistep methods for the numerical solution of the Schrödinger equation. J. Math. Chem 32(3), 257–270 (2002). J

    Article  CAS  Google Scholar 

  85. G. Psihoyios, T.E. Simos, Trigonometrically fitted predictor–corrector methods for IVPs with oscillating solutions. J. Comput. Appl. Math. 158(1), 135–144 (2003)

    Article  Google Scholar 

  86. G. Psihoyios, T.E. Simos, A fourth algebraic order trigonometrically fitted predictor–corrector scheme for IVPs with oscillating solutions. J. Comput. Appl. Math. 175(1), 137–147 (2005)

    Article  Google Scholar 

  87. T.E. Simos, Dissipative trigonometrically-fitted methods for linear second-order IVPs with oscillating solution. Appl. Math. Lett. 17(5), 601–607 (2004)

    Article  Google Scholar 

  88. T.E. Simos, Exponentially and trigonometrically fitted methods for the solution of the Schrödinger equation. Acta Appl. Math. 110(3), 1331–1352 (2010)

    Article  Google Scholar 

  89. G. Avdelas, E. Kefalidis, T.E. Simos, New P-stable eighth algebraic order exponentially-fitted methods for the numerical integration of the Schrödinger equation. J. Math. Chem. 31(4), 371–404 (2002)

    Article  CAS  Google Scholar 

  90. T.E. Simos, A family of trigonometrically-fitted symmetric methods for the efficient solution of the Schrödinger equation and related problems. J. Math. Chem. 34(1–2), 39–58 (2003)

    Article  CAS  Google Scholar 

  91. T.E. Simos, Exponentially—fitted multiderivative methods for the numerical solution of the Schrödinger equation. J. Math. Chem. 36(1), 13–27 (2004)

    Article  CAS  Google Scholar 

  92. T.E. Simos, A four-step exponentially fitted method for the numerical solution of the Schrödinger equation. J. Math. Chem. 40(3), 305–318 (2006)

    Article  CAS  Google Scholar 

  93. Hans Van de Vyver, A trigonometrically fitted explicit hybrid method for the numerical integration of orbital problems. Appl. Math. Comput. 189(1), 178–185 (2007)

    Article  Google Scholar 

  94. T.E. Simos, A family of four-step trigonometrically-fitted methods and its application to the Schrodinger equation. J. Math. Chem. 44(2), 447–466 (2009)

    Article  CAS  Google Scholar 

  95. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  96. G. Psihoyios, T.E. Simos, Sixth algebraic order trigonometrically fitted predictor–corrector methods for the numerical solution of the radial Schrödinger equation. J. Math. Chem. 37(3), 295–316 (2005)

    Article  CAS  Google Scholar 

  97. G. Psihoyios, T.E. Simos, The numerical solution of the radial Schrödinger equation via a trigonometrically fitted family of seventh algebraic order predictor–corrector methods. J. Math. Chem. 40(3), 269–293 (2006)

    Article  CAS  Google Scholar 

  98. Zhongcheng Wang, P-stable linear symmetric multistep methods for periodic initial-value problems. Comput. Phys. Commun. 171(3), 162–174 (2005)

    Article  CAS  Google Scholar 

  99. T.E. Simos, A new explicit Bessel and Neumann fitted eighth algebraic order method for the numerical solution of the Schrödinger equation. J. Math. Chem. 27(4), 343–356 (2000)

    Article  CAS  Google Scholar 

  100. Z.A. Anastassi, T.E. Simos, A family of two-stage two-step methods for the numerical integration of the Schrödinger equation and related IVPs with oscillating solution. J. Math. Chem. 45(4), 1102–1129 (2009)

    Article  CAS  Google Scholar 

  101. Chen Tang, Wenping Wang, Haiqing Yan, Zhanqing Chen, High-order predictorcorrector of exponential fitting for the N-body problems. J. Comput. Phys. 214(2), 505–520 (2006)

    Article  CAS  Google Scholar 

  102. G.A. Panopoulos, Z.A. Anastassi, T.E. Simos, Two optimized symmetric eight-step implicit methods for initial-value problems with oscillating solutions. J. Math. Chem. 46(2), 604–620 (2009)

    Article  CAS  Google Scholar 

  103. S. Stavroyiannis, T.E. Simos, Optimization as a function of the phase-lag order of nonlinear explicit two-step P-stable method for linear periodic IVPs. Appl. Numer. Math. 59(10), 2467–2474 (2009)

    Article  Google Scholar 

  104. S. Stavroyiannis, T.E. Simos, A nonlinear explicit two-step fourth algebraic order method of order infinity for linear periodic initial value problems. Comput. Phys. Commun. 181(8), 1362–1368 (2010)

    Article  CAS  Google Scholar 

  105. Z.A. Anastassi, T.E. Simos, Numerical multistep methods for the efficient solution of quantum mechanics and related problems. Phys. Rep. 482, 1–240 (2009)

    Article  CAS  Google Scholar 

  106. R. Vujasin, M. Sencanski, J. Radic-Peric, M. Peric, A comparison of various variational approaches for solving the one-dimensional vibrational Schrödinger equation. MATCH Commun. Math. Comput. Chem. 63(2), 363–378 (2010)

    CAS  Google Scholar 

  107. T.E. Simos, P.S. Williams, On finite difference methods for the solution of the Schrödinger equation. Comput. Chem. 23, 513–554 (1999)

    Article  CAS  Google Scholar 

  108. LGr Ixaru, M. Rizea, Comparison of some four-step methods for the numerical solution of the Schrödinger equation. Comput. Phys. Commun. 38(3), 329–337 (1985)

    Article  CAS  Google Scholar 

  109. J. Vigo-Aguiar, T.E. Simos, Review of multistep methods for the numerical solution of the radial Schrödinger equation. Int. J. Quantum Chem. 103(3), 278–290 (2005)

    Article  CAS  Google Scholar 

  110. T.E. Simos, G. Psihoyios, Special issue: the international conference on computational methods in sciences and engineering 2004—preface. J. Comput. Appl. Math. 191(2), 165 (2006). 165

    Article  Google Scholar 

  111. T.E. Simos, G. Psihoyios, Special issue—Selected papers of the International Conference on Computational Methods in Sciences and Engineering (ICCMSE 2003) Kastoria, Greece, 12–16 September 2003—Preface, J. Comput. Appl. Math. 175(1) (2005)

  112. T.E. Simos, J. Vigo-Aguiar, Special Issue—Selected Papers from the Conference on Computational and Mathematical Methods for Science and Engineering (CMMSE-2002) - Alicante University, Spain, 20–25 September 2002 - Preface, J. Comput. Appl. Math. 158(1) (2003)

  113. T.E. Simos, Ch. Tsitouras, I. Gutman, Preface for the special issue numerical methods in chemistry. MATCH Commun. Math. Comput. Chem. 60(3) (2008)

  114. T.E. Simos, I. Gutman, Papers presented on the International Conference on Computational Methods in Sciences and Engineering (Castoria, Greece, September 12–16, 2003). MATCH Commun. Math. Comput. Chem. 53(2), A3–A4 (2005)

  115. J.R. Dormand, M.E.A. El-Mikkawy, P.J. Prince, Families of Runge-Kutta-Nyström formulae. IMA J. Numer. Anal. 7, 235–250 (1987)

    Article  Google Scholar 

  116. J.R. Dormand, P.J. Prince, A family of embedded Runge–Kutta formulae. J. Comput. Appl. Math. 6, 19–26 (1980)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Simos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alolyan, I., Simos, T.E. A predictor–corrector explicit four-step method with vanished phase-lag and its first, second and third derivatives for the numerical integration of the Schrödinger equation. J Math Chem 53, 685–717 (2015). https://doi.org/10.1007/s10910-014-0449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0449-3

Keywords

Mathematics Subject Classification

Navigation