Skip to main content
Log in

A constructive approach to quasi-steady state reductions

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

We present a method to determine the reduction of a (polynomial or rational) ordinary differential equation that models a chemically reacting system, under the assumption that this system admits quasi-steady state (QSS) behavior for certain variables or reactions. We interpret QSS mathematically as a singular perturbation setting to which the classical theorems of Tikhonov and Fenichel apply. Based on a special decomposition of the fast part of the equation, we obtain an explicit formula for a reduced system, defined on the slow manifold (which is a subset of an algebraic variety). Moreover we determine appropriate initial values for the reduced system, which correspond to first integrals of the fast subsystem. These first integrals may not be obtainable in closed form, but locally Taylor expansions are available. We give several examples and applications, and we discuss in detail the separation of a system into fast and slow reactions. It turns out that methods and results from (algorithmic) commutative algebra and algebraic geometry are useful tools for QSS reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Aiken (ed.), Stiff Computation (Oxford University Press, New York, 1985)

    Google Scholar 

  2. Y.N. Bibikov, Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture Notes in Mathematics 702 (Springer, Berlin, 1979)

  3. F. Boulier, F. Lemaire, M. Moreno Maza, Reduction of chemical reaction systems using algebraic elimination (2011) (Preprint)

  4. D. Bothe, Instantaneous limits of reversible chemical reactions in presence of macroscopic convection. J. Differ. Equ. 193, 27–48 (2003)

    Article  Google Scholar 

  5. M.A. Burke, P.K. Maini, J.D. Murray, On the kinetics of suicide substrates. Biophys. Chem. 37, 81–90 (1990)

    Article  CAS  Google Scholar 

  6. D.A. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms. Undergraduate Texts in Mathematics (Springer, New York, 2007)

    Book  Google Scholar 

  7. W. Decker, G.-M. Greuel, G. Pfister, H. Schönemann, Singular 3-1-3—A Computer Algebra System for Polynomial Computations. http://www.singular.uni-kl.de (2011)

  8. W. Decker, Ch. Lossen, Computing in Algebraic Geometry. Algorithms and Computation in Mathematics 16 (Springer, Berlin, 2006)

    Google Scholar 

  9. M. Feinberg, The existence and uniqueness of steady states for a class of chemical reaction networks. Arch. Ration. Mech. Anal. 132, 311–370 (1995)

    Article  Google Scholar 

  10. N. Fenichel, Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31(1), 53–98 (1979)

    Article  Google Scholar 

  11. R.J. Field, R.M. Noyes, Oscillations in chemical systems, IV. Limit cycle bahavior in a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  CAS  Google Scholar 

  12. A. Goeke, Reduktion und asymptotische Reduktion von Reaktionsgleichungen. Doctoral dissertation, RWTH Aachen (2013)

  13. A. Goeke, C. Schilli, S. Walcher, E. Zerz, A note on the kinetics of suicide substrates. J. Math. Chem. 50, 1373–1377 (2012)

    Article  CAS  Google Scholar 

  14. A. Goeke, C. Schilli, S. Walcher, E. Zerz, Computing quasi-steady state reductions. J. Math. Chem. 50, 1495–1513 (2012)

    Article  CAS  Google Scholar 

  15. A. Goeke, S. Walcher, Quasi-steady state: Searching for and utilizing small parameters, in Recent Trends in Dynamical Systems, Proceedings of a Conference in Honor of Jürgen Scheurle, pp. 153–178. Springer Proceedings in Mathematics & Statistics 35 (Springer, New York, 2013)

  16. D.A. Goussis, Quasi steady state and partial equilibrium approximations: their relation and their validity. Combust. Theory Model. 16(5), 869–926 (2012)

    Article  Google Scholar 

  17. F.G. Heineken, H.M. Tsuchiya, R. Aris, On the mathematical status of the pseudo-steady state hypothesis of biochemical kinetics. Math. Biosci. 1, 95–113 (1967)

    Article  Google Scholar 

  18. F.C. Hoppensteadt, Singular perturbations on the infinite interval. Trans. Am. Math. Soc. 123, 521–535 (1966)

    Article  Google Scholar 

  19. F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47, 81–116 (1972)

    Article  Google Scholar 

  20. J.E. Humphreys, Linear Algebraic Groups (Springer, New York, 1981)

    Google Scholar 

  21. H.G. Kaper, T.J. Kaper, Asymptotic analysis of two reduction methods for systems of chemical reactions. Phys. D 165, 66–93 (2002)

    Article  CAS  Google Scholar 

  22. S.H. Lam, D.A. Goussis, The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26, 461–486 (1994)

    Article  CAS  Google Scholar 

  23. C.H. Lee, H.G. Othmer, A multi-time-scale analysis of chemical reaction networks: I. Deterministic systems. J. Math. Biol. 60, 387–450 (2009)

    Article  Google Scholar 

  24. J.W. Milnor, Topology from the Differentiable Viewpoint (Princeton University Press, Princeton, 1997)

    Google Scholar 

  25. J.D. Murray, Mathematical Biology. I. An Introduction, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  26. L. Noethen, S. Walcher, Tikhonov’s theorem and quasi-steady state. Discret. Contin. Dyn. Syst. Ser. B 16(3), 945–961 (2011)

    Article  Google Scholar 

  27. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative structures. J. Chem. Phys. 48, 1695–1700 (1968)

    Article  Google Scholar 

  28. M. Schauer, R. Heinrich, Quasi-steady-state approximation in the mathematical modeling of biochemical networks. Math. Biosci. 65, 155–170 (1983)

    Article  CAS  Google Scholar 

  29. L.A. Segel, M. Slemrod, The quasi-steady-state assumption: a case study in perturbation. SIAM Rev. 31, 446–477 (1989)

    Article  Google Scholar 

  30. I.R. Shafarevich, Basic Algebraic Geometry (Springer, New York, 1977)

    Google Scholar 

  31. M. Stiefenhofer, Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36, 593–609 (1998)

    Article  Google Scholar 

  32. N. Tatsunami, M. Yago, M. Hosoe, Kinetics of suicide substrates. Steady state treatments and computer-aided exact solutions. Biochem. Biophys. Acta 662, 226–235 (1981)

    CAS  Google Scholar 

  33. A.N. Tikhonov, Systems of differential equations containing a small parameter multiplying the derivative. Math. Sb. 31, 575–586 (1952). (in Russian)

    Google Scholar 

  34. F. Verhulst, Methods and Applications of Singular Perturbations. Boundary Layers and Multiple Timescale Dynamics (Springer, New York, 2005)

    Book  Google Scholar 

Download references

Acknowledgments

The first named author was supported by the DFG Research Training Group “Experimental and constructive algebra”. The present paper is based on her doctoral dissertations [16].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Walcher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goeke, A., Walcher, S. A constructive approach to quasi-steady state reductions. J Math Chem 52, 2596–2626 (2014). https://doi.org/10.1007/s10910-014-0402-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-014-0402-5

Keywords

Mathematics Subject Classification

Navigation