Skip to main content
Log in

Effects of Spider Chemotactile Cues on Arthropod Behavior

  • Published:
Journal of Insect Behavior Aims and scope Submit manuscript

Abstract

Predation risk can strongly affect the behavior of prey species. However, empirical evidence for changes in behavior driven by spider cues is restricted to relatively few taxa. Here, we conducted a series of behavioral experiments to test for changes in activity among a wide range of terrestrial arthropods. We confronted 13 insect and eight spider species with chemotactile cues of three spider species. We applied two different experimental setups: In the ‘no-choice experiment’ prey individuals were either put on control filter papers or on filter papers previously occupied by a spider. In the ‘choice experiment’, the prey individuals were able to choose between filter paper halves with and without spider cues. In both setups, the response to spider cues depended significantly on prey species, with some species increasing and others decreasing their activity. Surprisingly few prey species responded to the spider cues at all. Our results indicate that predator recognition upon contact with cue bearing filter papers is strongly prey-specific and that behavioral effects driven by spider chemotactile cues are an exception rather than the rule among terrestrial arthropods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abrams PA (2007) Defining and measuring the impact of dynamic traits on interspecific interactions. Ecology 88:2555–2562

    Article  PubMed  Google Scholar 

  • Beckerman AP, Uriarte M, Schmitz OJ (1997) Experimental evidence for a behavior-mediated trophic cascade in a terrestrial food chain. Proc Natl Acad Sci U S A 94:10735–10738

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bell RD, Rypstra AL, Persons MH (2006) The effect of predator hunger on chemically mediated antipredator responses and survival in the wolf spider pardosa milvina (Araneae: Lycosidae). Ethol 112:903–910

    Article  Google Scholar 

  • Binz H, Bucher R, Entling MH, Menzel F (2014) Knowing the risk: crickets distinguish between spider predators of different size and commonness. Ethol 120:99–110

    Article  Google Scholar 

  • Boevé J-L (1992) Association of some spiders with ants. Rev Suisse Zool 99:81–85

    Google Scholar 

  • Caro T (2005) Antipredator defenses in birds and mammals. University of Chicago Press, Chicago

    Google Scholar 

  • Danner BJ, Joern A (2003) Resource-mediated impact of spider predation risk on performance in the grasshopper ageneotettix deorum (Orthoptera: Acrididae). Oecologia 137:352–359

    Article  PubMed  Google Scholar 

  • R Development Core Team (2011) R: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.R-project.org/. Accessed 27.01.2012.

  • Finke DL, Denno RF (2005) Predator diversity and the functioning of ecosystems: the role of intraguild predation in dampening trophic cascades. Ecol Lett 8:1299–1306

    Article  Google Scholar 

  • Foelix R (2010) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Garcia LV (2004) Escaping the Bonferroni iron claw in ecological studies. Oikos 105:657–663

    Article  Google Scholar 

  • Grear JS, Schmitz OJ (2005) Effects of grouping behavior and predators on the spatial distribution of a forest floor arthropod. Ecology 86:960–971

    Article  Google Scholar 

  • Hedrick AV, Dill LM (1993) Mate choice by female crickets is influenced by predation risk. Anim Behav 46:193–196

    Article  Google Scholar 

  • Job W (1974) Beitrage zur biologie der fangnetz wolfspinne aulonia albimana (Walckenaer 1805). Zoologisches Jahrb Syst 101:560–608

    Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecosci 5:361–394

    Google Scholar 

  • Knost SJ, Rovner JS (1975) Scavenging by wolf spiders (Araneae: Lycosidae). Am Midl Nat 93:239–244

    Article  Google Scholar 

  • Kortet R, Hedrick A (2004) Detection of the spider predator, hololena nedra by naive juvenile field crickets (Gryllus integer) using indirect cues. Behaviour 141:1189–1196

    Article  Google Scholar 

  • Li D (2002) Hatching responses of subsocial spitting spiders to predation risk. Proc R Soc B Biol Sci 269:2155–2161

    Article  Google Scholar 

  • Lima SL, Bednekoff PA (1999) Temporal variation in danger drives antipredator behavior: the predation risk allocation hypothesis. Am Nat 153:649–659

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation - a review and prospectus. Can J Zool 68:619–640

    Article  Google Scholar 

  • Lind J, Cresswell W (2005) Determining the fitness consequences of antipredation behavior. Behav Ecol 16:945–956

    Article  Google Scholar 

  • Martinou AF, Milonas PG, Wright DJ (2009) Patch residence decisions made by aphidius colemani in the presence of a facultative predator. Biol Control 49:234–238

    Article  Google Scholar 

  • Matsumoto Y, Mizunami M (2006) Olfactory memory capacity of the cricket gryllus bimaculatus. Biol Lett 2:608–610

    Article  PubMed Central  PubMed  Google Scholar 

  • Messina FJ (1981) Plant protection as a consequence of an ant-membracid mutualism: interactions on goldenrod (Solidago sp.). Ecology 62:1433–1440

    Article  Google Scholar 

  • Miller JR, Ament JM, Schmitz OJ (2013) Fear on the move: predator hunting mode predicts variation in prey mortality and plasticity in prey spatial response. J Anim Ecol 83:214–222

    Article  PubMed  Google Scholar 

  • Moran MD, Hurd L (1997) A trophic cascade in a diverse arthropod community caused by a generalist arthropod predator. Oecologia 113:126–132

    Article  Google Scholar 

  • Murray DL, Jenkins CL (1999) Perceived predation risk as a function of predator dietary cues in terrestrial salamanders. Anim Behav 57:33–39

    Article  PubMed  Google Scholar 

  • Persons MH, Rypstra AL (2001) Wolf spiders show graded antipredator behavior in the presence of chemical cues from different sized predators. J Chem Ecol 27:2493–2504

    Article  CAS  PubMed  Google Scholar 

  • Persons MH, Uetz GW (1996) The influence of sensory information on patch residence time in wolf spiders (Araneae: Lycosidae). Anim Behav 51:1285–1293

    Article  Google Scholar 

  • Persons MH, Walker SE, Rypstra AL, Marshall SD (2001) Wolf spider predator avoidance tactics and survival in the presence of diet-associated predator cues (Araneae: Lycosidae). Anim Behav 61:43–51

    Article  PubMed  Google Scholar 

  • Persons MH, Walker SE, Rypstra AL (2002) Fitness costs and benefits of antipredator behavior mediated by chemotactile cues in the wolf spider pardosa milvina (Araneae : Lycosidae). Behav Ecol 13:386–392

    Article  Google Scholar 

  • Polis GA, Myers CA, Holt RD (1989) The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu Rev Ecol Syst 20:297–330

    Article  Google Scholar 

  • Preisser EL, Bolnick DI (2008) The many faces of fear: comparing the pathways and Impacts of nonconsumptive predator effects on prey populations. PLOS ONE 3:e2465

    Article  PubMed Central  PubMed  Google Scholar 

  • Preisser EL, Orrock JL (2012) The allometry of fear: interspecific relationships between body size and response to predation risk. Ecosphere 3:art77.

    Google Scholar 

  • Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509

    Article  Google Scholar 

  • Preisser EL, Orrock JL, Schmitz OJ (2007) Predator hunting mode and habitat domain alter nonconsumptive effects in predator–prey interactions. Ecology 88:2744–2751

    Article  PubMed  Google Scholar 

  • Roberts MJ (1996) Spiders of Britain and Northern Europe. Harper Collins, London

    Google Scholar 

  • Rovner JS (1996) Conspecific interactions in the lycosid spider rabidosa rabida: the roles of different senses. J Arachnol 24:16–23

    Google Scholar 

  • Rypstra AL, Buddle CM (2013) Spider silk reduces insect herbivory. Biol Lett 9:20120948

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmidt-Entling MH, Siegenthaler E (2009) Herbivore release through cascading risk effects. Biol Lett 5:773–776

    Article  PubMed Central  PubMed  Google Scholar 

  • Schmitz OJ (1998) Direct and indirect effects of predation and predation risk in old-field interaction webs. Am Nat 151:327–342

    Article  CAS  PubMed  Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Schmitz OJ, Beckerman AP, O’Brien KM (1997) Behaviorally mediated trophic cascades: effects of predation risk on food web interactions. Ecology 78:1388–1399

    Article  Google Scholar 

  • Schmitz OJ, Hambäck PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153

    Article  PubMed  Google Scholar 

  • Schonewolf KW, Bell R, Rypstra AL, Persons MH (2006) Field evidence of an airborne enemy-avoidance kairomone in wolf spiders. J Chem Ecol 32:1565–1576

    Article  CAS  PubMed  Google Scholar 

  • Schulz S (2004) Semiochemistry of spiders. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, New York, pp 110–150

    Chapter  Google Scholar 

  • Sih A (1980) Optimal behavior - can foragers balance two conflicting demands. Science 210:1041–1043

    Article  CAS  PubMed  Google Scholar 

  • Sitvarin MI, Rypstra AL (2012) Sex‐specific response of pardosa milvina (Araneae: Lycosidae) to experience with a chemotactile predation cue. Ethol 118:1230–1239

    Article  Google Scholar 

  • Snyder WE, Wise DH (2000) Antipredator behavior of spotted cucumber beetles (Coleoptera: Chrysomelidae) in response to predators that pose varying risks. Environ Entomol 29:35–42

    Article  Google Scholar 

  • Steffan SA, Snyder WE (2010) Cascading diversity effects transmitted exclusively by behavioral interactions. Ecology 91:2242–2252

    Article  PubMed  Google Scholar 

  • Storm JJ, Lima SL (2008) Predator-naïve fall field crickets respond to the chemical cues of wolf spiders. Can J Zool 86:1259–1263

    Article  CAS  Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  • Van der Aart P, De Wit T (1971) A field study on interspecific competition between ants (Formicidae) and hunting spiders (Lycosidae, Gnaphosidae, Ctenidae, Pisauridae, Clubionidae). Neth J Zool 21:117–126

    Article  Google Scholar 

  • Vance-Chalcraft HD, Rosenheim JA, Vonesh JR, Osenberg CW, Sih A (2007) The influence of intraguild predation on prey suppression and prey release: a meta-analysis. Ecology 88:2689–2696

    Article  PubMed  Google Scholar 

  • Vetter RS (2011) Scavenging by spiders (Araneae) and its relationship to pest management of the brown recluse spider. J Econ Entomol 104:986–989

    Article  PubMed  Google Scholar 

  • Walker SE, Rypstra AL (2003) Hungry spiders aren’t afraid of the big bad wolf spider. J Arachnol 31:425–427

    Article  Google Scholar 

  • Weddle CB, Steiger S, Hamaker CG, Ower GD, Mitchell C, Sakaluk SK, Hunt J (2013) Cuticular hydrocarbons as a basis for chemosensory self‐referencing in crickets: a potentially universal mechanism facilitating polyandry in insects. Ecol Lett 16:346–353

    Article  PubMed  Google Scholar 

  • Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecology 84:1083–1100

    Article  Google Scholar 

  • Whitehouse M, Mansfield S, Barnett M, Broughton K (2011) From lynx spiders to cotton: behaviourally mediated predator effects over four trophic levels. Austral Ecol 36:687–697

    Google Scholar 

  • Wilder SM, DeVito J, Persons MH, Rypstra AL (2005) The effects of moisture and heat on the efficacy of chemical cues used in predator detection by the wolf spider pardosa milvina (Araneae, Lycosidae). J Arachnol 33:857–861

    Article  Google Scholar 

  • Wise DH (1993) Spiders in ecological webs. Cambridge University Press, New York

    Book  Google Scholar 

Download references

Acknowledgements

We thank Franziska Möller for maintaining spiders and insects. We are grateful to Sebastian Bahrdt, Gunnar Oehmichen and Anne-Karin Schuster to help with the behavioral experiments. Anne Kathrin Stoepel and Manuel Becker analyzed a major part of the video material. We are also grateful to Esther Vogel for sharing her experience in similar experiments and Elisabeth Heil for drawings of the experimental setups. We thank four anonymous reviewers for helpful comments on earlier versions of the manuscript. The study was supported by the Swiss National Science Foundation under grant number 31003A_132895 to Martin Entling and by the Deutsche Forschungsgemeinschaft under grant number EN979/1–1 and ME3842/2–1 to Martin Entling and Florian Menzel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Bucher.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 185 kb)

ESM 2

(PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucher, R., Binz, H., Menzel, F. et al. Effects of Spider Chemotactile Cues on Arthropod Behavior. J Insect Behav 27, 567–580 (2014). https://doi.org/10.1007/s10905-014-9449-1

Download citation

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10905-014-9449-1

Keywords

Navigation