Skip to main content
Log in

Influence of High Annealing Temperature on Structural, Magnetic and Antimicrobial Activity of Silver Chromite Nanoparticles for Biomedical Applications

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

The silver chromite (Ag0.5Cr2.5O4) nanoparticles were prepared by one of the easiest wet chemical flash method. Thermal stability was appeared at high annealing temperature 900 °C. The crystallite and particle size was estimated, from X-ray diffraction peaks and from the field emission scanning electron microscopy, to be about 47.9 and 65.1 nm respectively. The composition of the investigated sample was determined using the X-ray dispersion analysis and the sample is single phase spinel structure. Thus, this is an evidence that Ag0.5Cr2.5O4 nanoparticles was prepared at this high annealing temperature (900 °C). From the magnetic measurements, a superparamagnetic behavior was appeared and it can be used strongly in antimicrobial application. During this application, Ag0.5Cr2.5O4 nanoparticles showed strong antibacterial activity against Gram-positive microorganisms. Thus, it is highly recommended to use Ag0.5Cr2.5O4 nanoparticles to be as antibacterial drug against Gram-positive bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Gabal, Y.M. Al Angari, F.A. Al-Agel, J. Mol. Struct. 1035, 341 (2013)

    Article  CAS  Google Scholar 

  2. H.K. Abdelsalam, Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J. Supercond. Nov. Magn. 31, 4063–4077 (2018). https://doi.org/10.1007/s10948-018-4689-5

    Article  CAS  Google Scholar 

  3. S.A. Amin, A. Sedky, On the correlation between electrical, optical and magnetic properties of Zn1−xPrxO nanoparticles. Mater. Res. Express 6, 065903 (2019). https://doi.org/10.1088/2053-1591/ab08c6

    Article  CAS  Google Scholar 

  4. A.A.H. El-Bassuony, Enhancement of structural and electrical properties of novelty nanoferrite materials. J. Mater. Sci. 28, 14489–14498 (2017). https://doi.org/10.1007/s10854-017-7312-9

    Article  CAS  Google Scholar 

  5. A. Sedky, E. Nazarova, K. Nenkov et al., A comparative study between electro and magneto excess conductivities in FeTeSe superconductors. J. Supercond. Nov. Magn. 30, 2751 (2017). https://doi.org/10.1007/s10948-017-4096-3

    Article  CAS  Google Scholar 

  6. A.A.H. El-Bassuony, Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J. Mater. Sci. 29, 3259–3269 (2018). https://doi.org/10.1007/s10854-017-8261-z

    Article  CAS  Google Scholar 

  7. A. Sedky, S.A. Amin, S.M. Khalil, Annealing time effect fluctuation induced excess conductivity in Bi(Pb):2223 superconductors. Chin. J. Phys. 51, 4 (2013). https://doi.org/10.6122/CJP.51.778

    Article  CAS  Google Scholar 

  8. A.A.H. El-Bassuony, A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J. Supercond. Nov. Magn. 31, 2829–2840 (2018). https://doi.org/10.1007/s10948-017-4543-1

    Article  CAS  Google Scholar 

  9. M.N. Akhtar, A.B. Sulong, M.A. Khan, Systematic study of Ce3+ on the structural and magnetic properties of Cu nanosized ferrites for potential applications. J. Rare Earths 36, 156 (2018)

    Article  CAS  Google Scholar 

  10. R.R. Kanna, N. Lenin, K. Sakthipandi, M. Sivabharathy, Impact of lanthanum on structural, optical, dielectric and magnetic properties of Mn1–xCuxFe1.85La0.15O4 spinel nanoferrites. Ceram. Int. 43, 15868 (2017)

    Article  Google Scholar 

  11. W.L. Oliani, L.F.C.P. de Lima, S.O. Rogero et al., AgNPs polypropylene gel films–thermal study and antibacterial activity. J. Therm. Anal. Calorim. 119, 1963 (2015). https://doi.org/10.1007/s10973-014-4353-7

    Article  CAS  Google Scholar 

  12. O. Yamamoto, Int. J. Inorg. Mater. 3, 643–646 (2001)

    Article  CAS  Google Scholar 

  13. C. Palache, H. Berman, C. Frondel, Dana’s System of Mineralogy, 7th edn. Version I (1944), pp. 709–712

  14. W.A. Deer, R.A. Howie, J. Zussman, Rock-Forming Minerals, vol. 5 (Geological Society of London, London, 1962), pp. 78–81

    Google Scholar 

  15. R. Latypov, G. Costin, S. Chistyakova et al., Platinum-bearing chromite layers are caused by pressure reduction during magma ascent. Nat. Commun. 9, 1 (2018). https://doi.org/10.1038/s41467-017-02773-w

    Article  CAS  Google Scholar 

  16. S. Kalia, S. Kango, A. Kumar, Y. Haldorai, B. Kumari, R. Kumar, Colloid Polym. Sci. 292(9), 2025–2052 (2014)

    Article  CAS  Google Scholar 

  17. B.I. Kharisov, H.V.R. Dias, O.V. Kharissova, Arab. J. Chem. (2014). https://doi.org/10.1016/j.arabjc.2014.10.049

    Article  Google Scholar 

  18. L. Wu, A. Mendoza-Garcia, Q. Li, S. Sun, Chem. Rev. 116(18), 10473–10512 (2016)

    Article  CAS  Google Scholar 

  19. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications. JOM (2019). https://doi.org/10.1007/s11837-019-03415-w

    Article  Google Scholar 

  20. A.A.H. El-Bassuony, H.K. Abdelsalam, Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J. Supercond. Nov. Magn. 31, 1539–1544 (2018). https://doi.org/10.1007/s10948-017-4340-x

    Article  CAS  Google Scholar 

  21. A.A.H. El-Bassuony, H.K. Abdelsalam, Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J. Supercond. Nov. Magn. 31, 3691–3703 (2018). https://doi.org/10.1007/s10948-018-4627-6

    Article  CAS  Google Scholar 

  22. A.W. Bauer, W.M. Kirby, C. Sherris, M. Turck, Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496 (1966)

    Article  CAS  Google Scholar 

  23. G. Routschka, Pocket manual refractory materials: structure—properties—verification. Vulkan-Verlag. ISBN 978-3-8027-3158-7 (2008)

  24. A.A.H. El-Bassuony, H.K. Abdelsalam, Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J. Alloys Compd. 726(2017), 1106–1118 (2017). https://doi.org/10.1016/j.jallcom.2017.08.087

    Article  CAS  Google Scholar 

  25. M. Gao, L. Sun, Z. Wang, Y. Zhao, Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C 33, 397–404 (2013). https://doi.org/10.1016/j.msec.2012.09.005

    Article  CAS  Google Scholar 

  26. A.A.H. El-Bassuony, H.K. Abdelsalam, Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J. Mater. Sci. 29, 11699–11711 (2018). https://doi.org/10.1007/s10854-018-9268-9

    Article  CAS  Google Scholar 

  27. C.T. Rueden, J. Schindelin, M.C. Hiner et al., ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 18, 529 (2017). https://doi.org/10.1186/s12859-017-1934-z

    Article  Google Scholar 

  28. A.A.H. El-Bassuony, H.K. Abdelsalam, Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J. Mater. Sci. 29, 5401–5412 (2018). https://doi.org/10.1007/s10854-017-8506-x

    Article  CAS  Google Scholar 

  29. A.A.H. El-Bassuony, H.K. Abdelsalam, Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite via high annealing temperature. J. Therm. Anal. Calorim. (2019). https://doi.org/10.1007/s10973-019-08207-7

    Article  Google Scholar 

  30. H.N. Abdelhamid, Delafossite Nanoparticle as new functional materials: advances in energy, nanomedicine and environmental applications. Mater. Sci. Forum 832, 28–53 (2015). https://doi.org/10.4028/www.scientific.net/MSF.832.28

    Article  Google Scholar 

  31. H.N. Abdelhamid, A. Talib, H.F. Wu, Facile synthesis of water soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv. 5, 34594–34602 (2015). https://doi.org/10.1039/C4RA14461A

    Article  CAS  Google Scholar 

  32. S.H. Kim, H.S. Lee, D.S. Ryu, S.J. Choi, D.S. Lee, Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. J. Microbial. Biotechnol. 39, 77–85 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Ethics declarations

Conflict of interest

The author declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Bassuony, A.A.H. Influence of High Annealing Temperature on Structural, Magnetic and Antimicrobial Activity of Silver Chromite Nanoparticles for Biomedical Applications. J Inorg Organomet Polym 30, 1821–1828 (2020). https://doi.org/10.1007/s10904-019-01306-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01306-w

Keywords

Navigation