Skip to main content
Log in

Spectroscopic Studies on the Thermodynamics of L-Cysteine Capped CdSe/CdS Quantum Dots—BSA Interactions

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

CdSe/CdS quantum dots (QDs) capped with L-cysteine can provide an effective platform for the interactions with bovine serum albumin (BSA). In this study, absorption and fluorescence (FL) spectroscopy were used to study the binding reactions of QDs with BSA, respectively. The binding constant (≈104 M-1) from FL quenching method matches well with that determined from the absorption spectral changes. The modified Stern-Volmer quenching constant (5.23 × 104, 5.22 × 104, and 4.90 × 104 M-1) and the binding sites (≈1) at different temperatures (304 K, 309 K, and 314 K) and corresponding thermodynamic parameters were calculated (∆G < 0, ∆H < 0, and ∆S < 0). The results show the quenching constant is inversely correlated with temperature. It indicates the quenching mechanism is the static quenching in nature rather than dynamic quenching. The negative values of free energy (∆G < 0) suggest that the binding process is spontaneous, ∆H < 0 and ∆S < 0 suggest that the binding of QDs to BSA is enthalpy-driven. The enthalpy and entropy changes for the formation of ground state complex depend on the capping agent of QDs and the protein types. Furthermore, the reaction forces were discussed between QDs and BSA, and the results show hydrogen bonds and van der Waals interactions play a major role in the binding reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brus LE (1983) A simple model for the ionization potential, electron affinity, and aqueous redox potentials of small semiconductor crystallites. J Chem Phys 79:5566. doi:10.1063/1.445676

    Article  CAS  Google Scholar 

  2. Ceo S, Woo WK, Bawendi M, Bulovic V (2002) Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420:800–803. doi:10.1038/nature01217

    Article  Google Scholar 

  3. El-Sayed MA (2004) Small is different: shape-, size-, and composition-dependent properties of some colloidal semiconductor nanocrystals. Acc Chem Res 37:326–333. doi:10.1021/ar020204f

    Article  CAS  PubMed  Google Scholar 

  4. Jr M, Bruchez MM, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016. doi:10.1126/science.281.5385.2013

    Article  Google Scholar 

  5. Chan WCW, Nie S (1998) Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281:2016–2018. doi:10.1126/science.281.5385.2016

    Article  CAS  PubMed  Google Scholar 

  6. Wu FX, Lewis JW, Kliger DS, Zhang JZ (2003) Unusual excitation intensity dependence of fluorescence of CdTe nanoparticles. J Chem Phys 118:12. doi:10.1063/1.1533733

    Article  CAS  Google Scholar 

  7. Zhong XH, Feng YY, Knoll W, Han M (2003) Alloyed ZnxCd1-xS nanocrystals with highly narrow luminescence spectral width. J Am Chem Soc 125:13559–13563. doi:10.1021/ja036683a

    Article  CAS  PubMed  Google Scholar 

  8. Mahtab R, Rogers JP, Murphy CJ (1995) Protein-sized quantum dot luminescence can distinguish between “straight”, “bent” and “kinked” oligonucleotides. J Am Chem Soc 117:9099–9100. doi:10.1021/ja00140a040

    Article  CAS  Google Scholar 

  9. Mahtab R, Rogers JP, Singleton CP, Murphy CJ (1996) Preferential adsorption of a “kinked” DNA to a neutral curved surface: comparisons to and implications for nonspecific DNA-protein interactions. J Am Chem Soc 118:7028–7032. doi:10.1021/ja961602e

    Article  CAS  Google Scholar 

  10. Mattoussi H, Mauro JM, Goldman ER, Anderson GP, Sundar VC, Mikulec FV, Bawendi MG (2000) Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc 122:12142–12150. doi:10.1021/ja002535y

    Article  CAS  Google Scholar 

  11. Gaponik N, Radtchenko IL, Sukhorukov GB, Weller H, Rogach AL (2002) Toward encoding combinatorial libraries: charge-driven microencapsulation of semiconductor nanocrystals luminescing in the visible and near IR. Adv Mater 14:879–882. doi:10.1002/1521-4095(20020618)14:12&gt;879::AID-ADMA879&lt:3.0.CO;2-A

    Article  CAS  Google Scholar 

  12. Talapin DV, Rogach AL, Shevchenko EV, Komowski A, Haase M, Weller H (2002) Dynamic distribution of growth rates within the ensembles of colloidal II–VI and III–V semiconductor nanocrystals as a factor governing their photoluminescence efficiency. J Am Chem Soc 124:5782–5790. doi:10.1021/ja0123599

    Article  CAS  PubMed  Google Scholar 

  13. Samia ACS, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125:15736–15737. doi:10.1021/ja0386905

    Article  CAS  PubMed  Google Scholar 

  14. Samia ACS, Dayal S, Burda C (2006) Quantum dot-based energy transfer:perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82:617–625. doi:10.1562/2005-05-11-IR-525

    Article  CAS  PubMed  Google Scholar 

  15. Mamedova NN, Kotov NA, Rogach AL, Studer J (2001) Albumin-CdTe nanoparticle bioconjugates:preparation, structure, and interunit energy transfer with antenna effect. Nano Lett 1:281–286. doi:10.1021/nl015519n

    Article  CAS  Google Scholar 

  16. Idowu M, Lamprecht E, Nyokong T (2008) Interaction of water-soluble thiol capped CdTe quantum dots and bovine serum albumin. J Photochem Photobiol A: Chem 198:7–12. doi:10.1016/j.jphotochem.2008.02.008

    Article  CAS  Google Scholar 

  17. Gerhards C, Schulz-Drost C, Sgobba V, Guldi DM (2008) Conjugating luminescent CdTe quantum dots with biomolecules. J Phys Chem B 112:14482–14491. doi:10.1021/jp8030094

    Article  CAS  PubMed  Google Scholar 

  18. Jhonsi MA, Kathiravan A, Renganathan R (2009) Spectroscopic studies on the interaction of colloidal capped CdS nanoparticles with bovine serum albumin. Colloid Surface B 72:167. doi:10.1016/j.colsurfb.2009.03.030

    Article  Google Scholar 

  19. Xiao Q, Huang S, Qi ZD, Zhou B, He ZK, Liu Y (2008) Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim Biophys Acta, Proteins Proteomics 1487:1020–1027. doi:10.1016/j.bbapap.2008.03.018

    Article  Google Scholar 

  20. Olson RE, Christ DD (1996) Plasma protein binding of drugs. Ann Rep Med Chem 31:327–336. doi:10.1016/S0065-7743(08)60472-8

    Article  CAS  Google Scholar 

  21. Xie J, Zheng Y, Ying JY (2009) Protein-directed synthesis of highly fluorescent gold nanoclusters. J Am Chem Soc 131:888–889. doi:10.1021/ja806804u

    Article  CAS  PubMed  Google Scholar 

  22. Yang L, Xing R, Shen Q, Jiang K, Ye F, Wang J, Ren Q (2006) Fabrication of protein-conjugated silver sulfide nanorods in the bovine serum albumin solution. J Phys Chem B 110:10534–10539. doi:10.1021/jp055603h

    Article  CAS  PubMed  Google Scholar 

  23. Xie JP, Lee JY, Wang DIC (2007) Synthesis of single-crystallinegold nanoplates in aqueous solutions through biomineralization by serum albumin protein. J Phys Chem C 111:10226–10232. doi:10.1021/jp0719715

    Article  CAS  Google Scholar 

  24. Liu P, Wang QS, Li X (2009) Studies on CdSe/l-cysteine quantum dots synthesized in aqueous solution for biological labeling. J Phys Chem C 113:7670–7676. doi:10.1021/jp901292q

    Article  CAS  Google Scholar 

  25. Henglein A (1989) Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem Rev 89:1861–1873. doi:10.1021/cr00098a010

    Article  CAS  Google Scholar 

  26. M. K. Gattas-Asfura, R. M. Leblanc, (2003), Peptide-coated CdS quantumn dots for the optical detection of copper(I) and silver(II). Chem. Commun. 2684–2685. doi:10.1039/b308991f

  27. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  28. Kathiravan A, Renganathan R (2008) Interaction of colloidal TiO2 with bovine serum albumin: a fluorescence quenching study. Colloid Surface A 324:176–180. doi:10.1016/j.colsurfa.2008.04.017

    Article  CAS  Google Scholar 

  29. Benesi HA, Hildebrand JH (1949) A Spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71:2703–2707. doi:10.1021/ja01176a030

    Article  CAS  Google Scholar 

  30. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263. doi:10.1021/bi00793a015

    Article  CAS  PubMed  Google Scholar 

  31. Pu L (2004) Fluorescence of organic molecules in chiral recognition. Chem Rev 104:1687–1716. doi:10.1021/cr030052h

    Article  CAS  PubMed  Google Scholar 

  32. Anbazhagan V, Renganathan R (2008) Study on the binding of 2, 3-diazabicyclo[2.2.2]oct-2-ene with bovine serum albumin by fluorescence spectroscopy. J Lumin 128:1454. doi:10.1016/j.jlumin.2008.02.004

    Article  CAS  Google Scholar 

  33. Mahtab R, Harden HH, Murphy CJ (2000) Temperature- and salt-dependent binding of long DNA to protein-sized quantum dots: thermodynamics of “inorganic protein”–DNA interactions. J Am Chem Soc 122:14. doi:10.1021/ja9907156

    Article  CAS  Google Scholar 

  34. Cestaria AR, Vieiraa EFS, Simonib JA, Airoldi C (2000) Thermochemical investigation on the adsorption of some divalent cations on modified silicas obtained from sol-gel process. Thermochim Acta 348:25–31. doi:10.1016/S0040-6031(99)00380-9

    Article  Google Scholar 

  35. Liu P, Wang QS, Li X, Zhang CC (2009) Zeta-potentials and enthalpy changes in the process of electrostatic self-assembly of cations on silica surface. Powder Technol 193:46–49. doi:10.1016/j.powtec.2009.02.006

    Article  CAS  Google Scholar 

  36. De M, You CC, Srivastava S, Rotello VM (2007) Biomimetic interactions of proteins with functionalized nanoparticles: a thermodynamic study. J Am Chem Soc 129:10747–10753. doi:10.1021/ja071642q

    Article  CAS  PubMed  Google Scholar 

  37. Leckband D (2000) Measuring the forces that control protein interactions. Annu Rev Biophys Biomol Struct 29:1–26. doi:10.1146/annurev.biophys.29.1.1

    Article  CAS  PubMed  Google Scholar 

  38. Ross DP, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  39. Qi K, Ma QG, Remsen EE, Clark CG, Wooley KL (2004) Determination of the bioavailability of biotin conjugated onto shell cross-linked (SCK) nanoparticles. J Am Chem Soc 126:6599–6607. doi:10.1021/ja039647k

    Article  CAS  PubMed  Google Scholar 

  40. Carter DC, Ho JX (1994) Structure of Serum Albumin. Adv Pro Chem 45:153–176. doi:10.1016/S0065-3233(08)60640-3

    Article  CAS  Google Scholar 

  41. Peters T (1985) Serum albumin. Adv Pro Chem 37:161–245. doi:10.1016/S0065-3233(08)60065-0

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support of the National High-Tech Research and Development Program of China (863 Program, 2007AA06Z418 ) and National Natural Science Foundation of China (20577036, 20777058, 20977070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. J. Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, L., Zhou, P.J., Li, S.Q. et al. Spectroscopic Studies on the Thermodynamics of L-Cysteine Capped CdSe/CdS Quantum Dots—BSA Interactions. J Fluoresc 21, 17–24 (2011). https://doi.org/10.1007/s10895-010-0685-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0685-2

Keywords

Navigation