Skip to main content

Advertisement

Log in

Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Prostate cancer is one of the most common types of cancer in men, and unfortunately many prostate tumours remain asymptomatic until they reach advanced stages. Diagnosis is typically performed through Prostate-Specific Antigen (PSA) quantification, Digital Rectal Examination (DRE) and Transrectal Ultrasonography (TU). The antigen (PSA) is secreted by all prostatic epithelial cells and not exclusively by cancerous ones, so its concentration also increases in the presence of other prostatic diseases. DRE and TU are not reliable for early detection, when histological analysis of prostate tissue obtained from a biopsy is necessary. In this context, fluorescence techniques are very important for the diagnosis of cancer. In this paper we explore the potential of using endogenous phorphyrin blood fluorescence as tumour marker for prostate cancer. Substances such as porphyrin derivatives accumulate substantially more in tumours than in normal tissues; thus, measuring blood porphyrin concentration by autofluorescence intensity may provide a good parameter for determining tumour stage. In this study, the autofluorescence of blood porphyrin was analyzed using fluorescence and excitation spectroscopy on healthy male NUDE mice and in those with prostate cancer induced by inoculation of DU145 cells. A significant contrast between the blood of normal and cancer subjects could be established. Blood porphyrin fluorophore showed an enhancement on the fluorescence band around 632 nm following tumour growth. Fluorescence detection has advantages over other light-based investigation methods: high sensitivity, high speed and safety. However it does carry the drawback of low specificity of detection. The extraction of blood porphyrin using acetone can solve this problem, since optical excitation of further molecular species can be excluded, and light scattering from blood samples is negligible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kravchick S, Cytron S, Stepnov E, Ben-Dor D, Yakov K, Peled R (2009) 7 to 10 years’ follow-up of 573 patients with elevated prostate-specific antigen (>4 ng/mL) or/and suspected rectal examination: biopsies protocol and follow-up guides. J Endourol 23:1007–1013

    Article  PubMed  Google Scholar 

  2. Miyakubo M, Ito K, Yamamoto T, Takechi H, Ohi M, Suzuki K (2009) Proprostate-specific antigen: its usefulness in the era of multiple-core prostate biopsy. Int J Urol 16:561–565

    Article  CAS  PubMed  Google Scholar 

  3. Mechergui YB, Ben Jemaa A, Mezigh C, Fraile B, Ben Rais N, Paniagua R, Royuela M, Oueslati R (2009) The profile of prostate epithelial cytokines and its impact on sera prostate specific antigen levels. Inflammation 32:202–210

    Article  PubMed  Google Scholar 

  4. Kvale R, Moller B, Wahlqvist R, Fossa SD, Berner A, Busch C, Kyrdalen AE, Svindland A, Viset T, Halvorsen OJ (2009) Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int 103:1647–1654

    Article  PubMed  Google Scholar 

  5. Salomatina E, Muzikansky A, Neel V, Yaroslavsky AN (2009) Multimodal optical imaging and spectroscopy for the intraoperative mapping of nonmelanoma skin cancer. J Appl Phys 105:102010

    Article  Google Scholar 

  6. Scepanovic OR, Volynskaya Z, Kong CR, Galindo LH, Dasari RR, Feld MS (2009) A multimodal spectroscopy system for real-time disease diagnosis. Rev Sci Instrum 80:043103

    Article  PubMed  Google Scholar 

  7. Courrol LC, Silva FRD, Coutinho EL, Piccoli MF, Mansano RD, Vieira ND, Schor N, Bellini MH (2007) Study of blood porphyrin spectral profile for diagnosis of tumor progression. J Fluoresc 17:289–292

    Article  CAS  PubMed  Google Scholar 

  8. Kalaivani R, Masilamani V, Sivaji K, Elangovan M, Selvaraj V, Balamurugan SG, Al-Salhi MS (2008) Fluorescence spectra of blood components for breast cancer diagnosis. Photomed Laser Surg 26:251–256

    Article  CAS  PubMed  Google Scholar 

  9. Masilamani V, Al-Zhrani K, Al-Salhi M, Al-Diab A, Al-Ageily M (2004) Cancer diagnosis by autofluorescence of blood components. J Lumin 109:143–154

    CAS  Google Scholar 

  10. Ajioka RS, Phillips JD, Kushner JP (2006) Biosynthesis of heme in mammals. Biochim Biophys Acta-Mol Cell Res 1763:723–736

    Article  CAS  Google Scholar 

  11. Hoggins M, Dailey HA, Hunter CN, Reid JD (2007) Direct measurement of metal ion chelation in the active site of human ferrochelatase. Biochemistry 46:8121–8127

    Article  CAS  PubMed  Google Scholar 

  12. Ponka P, Schulman HM (1993) Regulation of heme-biosynthesis—distinct regulatory features in erythroid-cells. Stem Cells 11:24–35

    Article  CAS  PubMed  Google Scholar 

  13. Ng JC, Qi LX, Moore MR (2002) Porphyrin profiles in blood and urine as a biomarker for exposure to various arsenic species. Cell Mol Biol 48:111–123

    CAS  PubMed  Google Scholar 

  14. Bellini MH, Coutinho EL, Courrol LC, Silva FRD, Vieira ND, Schor N (2008) Correlation between autofluorescence intensity and tumor area in mice bearing renal cell carcinoma. J Fluoresc 18:1163–1168

    Article  CAS  PubMed  Google Scholar 

  15. Gibbs-Strauss SL, O’Hara JA, Hoopes PJ, Hasan T, Pogue BW (2009) Noninvasive measurement of aminolevulinic acid-induced protoporphyrin IX fluorescence allowing detection of murine glioma in vivo. J Biomed Opt 14:014007

    Article  PubMed  Google Scholar 

  16. Juzenas P, Juzeniene A, Iani V, Moan J (2009) Depth profile of protoporphyrin IX fluorescence in an amelanotic mouse melanoma model. Photochem Photobiol 85:760–764

    Article  CAS  PubMed  Google Scholar 

  17. Kleinpenning MM, Smits T, Ewalds E, van Erp PEJ, van de Kerkhof PCM, Gerritsen MJP (2006) Heterogeneity of fluorescence in psoriasis after application of 5-aminolaevulinic acid: an immunohistochemical study. Br J Dermatol 155:539–545

    Article  CAS  PubMed  Google Scholar 

  18. Larsen ELP, Randeberg LL, Gederaas OA, Arum CJ, Hjelde A, Zhao CM, Chen D, Krokan HE, Svaasand LO (2008) Monitoring of hexyl 5-aminolevulinate-induced photodynamic therapy in rat bladder cancer by optical spectroscopy. J Biomed Opt 13:044031

    Article  PubMed  Google Scholar 

  19. Lu SJ, Chen JY, Zhang Y, Ma J, Wang PN, Peng Q (2008) Fluorescence detection of protoporphyrin IX in living cells: a comparative study on single- and two-photon excitation. J Biomed Opt 13:024014

    Article  PubMed  Google Scholar 

  20. Utsuki S, Miyoshi N, Oka H, Miyajima Y, Shimizu S, Suzuki S, Fujii K (2007) Fluorescence-guided resection of metastatic brain tumors using a 5-aminolevulinic acid-induced protoporphyrin IX: pathological study. Brain Tumor Pathol 24:53–55

    Article  CAS  PubMed  Google Scholar 

  21. Uttamlal M, Holmes-Smith AS (2008) The excitation wavelength dependent fluorescence of porphyrins. Chem Phys Lett 454:223–228

    Article  CAS  Google Scholar 

  22. Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF (1978) Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21:274–281

    Article  CAS  PubMed  Google Scholar 

  23. Piot B, Rousset N, Lenz P, Eleouet S, Carre J, Vonarx V, Bourre L, Patrice T (2001) Enhancement of delta aminolevulinic acid-photodynamic therapy in vivo by decreasing tumor pH with glucose and amiloride. Laryngoscope 111:2205–2213

    Article  CAS  PubMed  Google Scholar 

  24. Kozin SV, Shkarin P, Gerweck LE (2001) The cell transmembrane pH gradient in tumors enhances cytotoxicity of specific weak acid chemotherapeutics. Cancer Res 61:4740–4743

    CAS  PubMed  Google Scholar 

  25. Chu GL, Dewey WC (1988) The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res 114:154–167

    Article  CAS  PubMed  Google Scholar 

  26. Gerweck LE, Seetharaman K (1996) Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res 56:1194–1198

    CAS  PubMed  Google Scholar 

  27. Newell KJ, Tannock IF (1989) Reduction of intracellular-pH as a possible mechanism for killing cells in acidic regions of solid tumors—effects of carbonylcyanide-3-chlorophenylhydrazone. Cancer Res 49:4477–4482

    CAS  PubMed  Google Scholar 

  28. Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    CAS  PubMed  Google Scholar 

  29. Tannock IF (1989) Environmental-factors within solid tumors that influence cell-growth and viability. Cancer Metastasis Rev 8:146–146

    Google Scholar 

  30. Kubat P, Lang K, Anzenbacher P (2004) Modulation of porphyrin binding to serum albumin by pH. Biochim Biophys Acta-General Subjects 1670:40–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilia Coronato Courrol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Oliveira Silva, F.R., Bellini, M.H., Tristão, V.R. et al. Intrinsic Fluorescence of Protoporphyrin IX from Blood Samples Can Yield Information on the Growth of Prostate Tumours. J Fluoresc 20, 1159–1165 (2010). https://doi.org/10.1007/s10895-010-0662-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0662-9

Keywords

Navigation