Skip to main content

Advertisement

Log in

Fluorescence Resonance Energy Transfer and Complex Formation Between Thiazole Orange and Various Dye-DNA Conjugates: Implications in Signaling Nucleic Acid Hybridization

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescence resonance energy transfer (FRET) was investigated between the intercalating dye thiazole orange (TO), and the dyes Cyanine 3 (Cy3), Cyanine 5 (Cy5), Carboxytetramethyl Rhodamine (TAMRA), Iowa Black FQ (IabFQ), and Iowa Black RQ (IabRQ), which were covalently immobilized at the end of dsDNA oligonucleotides. In addition to determining that TO was an effective energy donor, FRET efficiency data obtained from fluorescence lifetime measurements indicated that TO intercalated near the middle of the 19mer oligonucleotide sequence that was used in this study. Discrepancies in FRET efficiencies obtained from intensity and lifetime measurements led to the investigation of non-fluorescent complex formation between TAMRA and modified TO. The hydrophobicity of TO was modified by the addition of either an alkyl or polyethylene glycol (PEG) side-chain to study effects of dimer and aggregate formation. It was found that at stoichiometric excesses of modified TO, fluorescence quenching of TAMRA was observed, and that this could be correlated to the hydrophobicity of a TO-chain species. The TAMRA:TO-chain association constant for the TO-alkyl system was 0.043±0.002 M−1, while that obtained for the TO-PEG was 0.037±0.002 M−1. From the perspective of method development for the transduction of hybridization events, we present and evaluate a variety of schemes based on energy transfer between TO and an acceptor dye, and discuss the implications of complex formation in such schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Almadidy A, Watterson J, Piunno PAE, Foulds IV, Horgen PA, Krull UJ (2003) A fibre-optic biosensor for detection of microbial contamination. Can J Chem/Rev Can Chim 81:339–349

    Article  CAS  Google Scholar 

  2. Hartley HA, Baeumner AJ (2003) Biosensor for the specific detection of a single viable B-anthracis spore. Anal Bioanal Chem 376:319–327

    PubMed  CAS  Google Scholar 

  3. Deisingh AK, Thompson M (2001) Sequences of E-Coli O157:H7 detected by a PCR-acoustic wave sensor combination. Analyst 126:2153–2158

    Article  PubMed  CAS  Google Scholar 

  4. Zhong XB, Reynolds R, Kidd JR, Kidd KK, Jenison R, Marlar RA, Ward DC (2003) Single-nucleotide polymorphism genotyping on optical thin-film biosensor chips. Proc Natl Acad Sci USA 100:11559–11564

    Article  PubMed  CAS  Google Scholar 

  5. Watterson JH, Raha S, Kotoris CC, Wust CC, Gharabaghi F, Jantzi SC, Haynes NK, Gendron NH, Krull UJ, Mackenzie AE, Piunno PAE (2004) Rapid detection of single nucleotide polymorphisms associated with spinal muscular atrophy by use of a reusable fibre-optic biosensor. Nucleic Acids Res 32:e18

    Article  PubMed  Google Scholar 

  6. Storri S, Santoni T, Mascini M (1998) A piezoelectric biosensor for DNA hybridization detection. Anal Lett 31:1795–1808

    CAS  Google Scholar 

  7. Xie H, Zhang CY, Gao ZQ (2004) Amperometric detection of nucleic acid at femtomolar levels with a nucleic acid/electrochemical activator bilayer on gold electrode. Anal Chem 76:1611–1617

    Article  PubMed  CAS  Google Scholar 

  8. Fojta M (2002) Electrochemical sensors for DNA interactions and damage. Electroanal 14:1449–1463

    Article  CAS  Google Scholar 

  9. Mariotti E, Minunni M, Mascini M (2002) Surface plasmon resonance biosensor for genetically modified organisms detection. Anal Chim Acta 453:165–172

    Article  CAS  Google Scholar 

  10. Rich RL, Myszka DG (2000) Survey of the 1999 surface plasmon resonance biosensor literature. J Mol Recognit 13:388–407

    Article  PubMed  CAS  Google Scholar 

  11. Lee M, Walt DR (2000) A fiber-optic microarray biosensor using aptamers as receptors. Anal Biochem 282:142–146

    Article  PubMed  CAS  Google Scholar 

  12. Haugland R (2002) Handbook of molecular probes and research products, 9th edn. Molecular Probes, Inc., Eugene

    Google Scholar 

  13. Rye HS, Yue S, Wemmer DE, Quesada MA, Haugland RP, Mathies RA, Glazer AN (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes—properties and applications. Nucleic Acids Res 20:2803–2812

    Article  PubMed  CAS  Google Scholar 

  14. Nygren J, Svanvik N, Kubista M (1998) The interactions between the fluorescent dye thiazole orange and DNA. Biopolymers 46:39–51

    Article  PubMed  CAS  Google Scholar 

  15. Lee LG, Chen CH, Chiu LA (1986) Thiazole orange—A new dye for reticulocyte analysis. Cytometry 7:508–517

    Article  PubMed  CAS  Google Scholar 

  16. Kricka LJ (2002) Stains, labels, and detection strategies for nucleic acids assays. Ann Clin Biochem 39:114–129

    Article  PubMed  CAS  Google Scholar 

  17. Prodhomme S, Demaret J-P, Vinogradov S, Asseline U, Morin-Allory L, Vigny P (1999) A theoretical and experimental study of two thiazole orange derivatives with single- and double-stranded oligonucleotides. Polydeoxyribonucleotides and DNA. J Photochem Photobiol B 53:60–69

    Article  PubMed  CAS  Google Scholar 

  18. Norman DG, Grainger RJ, Uhrin D, Lilley DMJ (2000) Location of cyanine-3 on double-stranded DNA: Importance for fluorescence resonance energy transfer studies. Biochemistry 39:6317–6324

    Article  PubMed  CAS  Google Scholar 

  19. Valeur R (2002) Molecular fluorescence principles and applications. Wiley, VCH Verlag, GmbH, Weinheim

    Google Scholar 

  20. Wang X, Krull UJ (2005) Synthesis and fluorescence studies of thiazole orange tethered onto oligonucleotide: Development of a self-contained DNA biosensor on a fibre optic surface. Bioorg Med Chem Lett 15:1725–1729

    Article  PubMed  CAS  Google Scholar 

  21. Wang X, Krull UJ (2002) Tethered thiazole orange intercalating dye for development of fibre-optic nucleic acid biosensors. Anal Chim Acta 470:57–70

    Article  CAS  Google Scholar 

  22. Nissum M, Jacobsen JP, Faurskov Nielsen O, Waage Jensen P (1997) Deterimination of the stability of complexes between DNA and the thiazole orange derivatives TO6 and TOTO by surface-enhanced resonance raman spectroscopy. Biospectr. 3:207–213

    Article  CAS  Google Scholar 

  23. Stærk D, Hamed AA, Pedersen EB, Jacobsen JP (1997) Bisintercalation of homodimeric thiazole orange dyes in DNA: Effect of modifying the linker. Bioconjug Chem 8:869–877

    Article  PubMed  CAS  Google Scholar 

  24. Laib S, Seeger S (2004) FRET studies of the interaction of dimeric cyanine dyes with DNA. J Fluoresc 14:187–191

    Article  PubMed  CAS  Google Scholar 

  25. Bordelon JA, Feierabend KJ, Siddiqui SA, Wright LL, Petty JT (2006) Viscometry and atomic force microscopy studies of the interactions of a dimeric cyanine dye with DNA. Phys J Chem B 106:4838–4843

    Article  Google Scholar 

  26. Privat E, Asseline U (2001) Synthesis and binding properties of oligo-2′-deoxyribonucleotides covalently linked to a thiazole orange derivative. Bioconjug Chem 12:757–769

    Article  PubMed  CAS  Google Scholar 

  27. Privat E, Melvin T, Mérola F, Schweizer G, Prodhomme S, Asseline U, Vigny P (2002) Fluorescent properties of oligonucleotide-conjugated thiazole orange probes. Photochem Photobiol 75:201–210

    Article  PubMed  CAS  Google Scholar 

  28. Benson SC, Singh P, Glazer AN (1993) Heterodimeric DNA-binding dyes designed for energy-transfer-synthesis and spectroscopic properties. Nucleic Acids Res 21:5727–5735

    Article  PubMed  CAS  Google Scholar 

  29. Le Pecq JB, Paoletti C (1967) A fluorescent complex between ethidium bromide and nucleic acids—physical–chemical characterization. J Mol Biol 29:87–106

    Article  Google Scholar 

  30. Hyun K-M, Choi S-D, Lee S, Kim SK (1997) Can energy transfer be an indicator for DNA intercalation? Biochim Biophys Acta 1334:312–316

    PubMed  CAS  Google Scholar 

  31. Rye HS, Quesada MA, Peck K, Mathies RA, Glazer AN (1991) High-sensitivity 2-colour detection of double-stranded DNA with a confocal fluorescence gel scanner using ethidium homodimer and thiazole orange. Nucleic Acids Res 19:327–333

    Article  PubMed  CAS  Google Scholar 

  32. Laib S, Seeger S (2004) FRET studies of the interaction of dimeric cyanine dyes with DNA. J Fluoresc 14:187–191

    Article  PubMed  CAS  Google Scholar 

  33. Petty TJ, Bordelon JA, Robertson ME (2000) Thermodynamic characterization of the assocation of cyanine dyes with DNA. J Phys Chem B 104:7221–7227

    Article  CAS  Google Scholar 

  34. Bunkenborg J, Gadjev NI, Deligeorgiev T, Jacobsen JP (2000) Concerted intercalation and minor groove recognition of DNA by a homodimeric thiazole orange dye. Bioconjug Chem 11:861–867

    Article  PubMed  CAS  Google Scholar 

  35. Bunkenborg J, Stidsen MM, Jacobsen JP (1999) On the sequence selective bis-intercalation of a homodimeric thiazole orange dye in DNA. Biconjug Chem 10:824–831

    Article  CAS  Google Scholar 

  36. Rye HS, Glazer AN (1995) Interaction of dimeric intercalating dyes with single-stranded DNA. Nucleic Acids Res 23:1215–1222

    Article  PubMed  CAS  Google Scholar 

  37. Brooker LGS, White FL, Keyes GH, Smyth CP, Oesper PF (1941) Colour and constitution. II. Absorptions of some related vinylene-homologous series. J Am Chem Soc 63:3192–3203

    Article  CAS  Google Scholar 

  38. Brooker LGS, Keyes GH, Williams WW (1942) Colour and constitution. V. The absorption of unsymmetrical cyanines. Resonance as a basis for a classification of dyes. J Am Chem Soc 63:199–210

    Article  Google Scholar 

  39. Carreon JR, Mahon KP, Kelley SO (2004) Thiazole orange-peptide conjugates: Sensitivity of DNA binding to chemical structure. Org Lett 6:517–519

    Article  PubMed  CAS  Google Scholar 

  40. Koizumi M, Deitrich-Buchecker C, Sauvage JP (2004) A [2]catenane containing 1,1′-binaphthyl units and 1,10-phenanthroline fragments: Synthesis and intermolecular energy transfer processes. Eur J Org Chem 4:770–775

    Article  Google Scholar 

  41. Cheung HC (1991) In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Principles. Plenum, New York, pp 127–176

  42. Sjöback R, Nygren J, Kubista M (1995) Absorption and fluorescence properties of fluorescein. Spectrochim Acta A 51:L7–L21

    Article  Google Scholar 

  43. Massey M, Algar WR, Krull UJ (2006) Fluorescence resonance energy transfer (FRET) for DNA biosensors: FRET pair and förster distances for various dye-DNA conjugates. Anal Chim Acta (in press) DOI: 10.1016/j.aca.2005.12.050

  44. Rasnik I, Mckinney SA, Ha T (2005) Surfaces and orientations: Much to FRET about? Acc Chem Res 38:542–548

    Article  PubMed  CAS  Google Scholar 

  45. Shins JM, Agronskaia A, de Grooth BG, Greve J (1999) Orientation of the chromophore dipoles in the TOTO-DNA system. Cytometry 37:230–237

    Article  Google Scholar 

  46. Mizukami S, Kikuchi K, Higuchi T, Urano Y, Mashima T, Tsuruo T, Nagano T (1999) Imaging of capase-3 activation in HeLa cells stimulated with etoposide using a novel fluorescent probe. FEBS Lett 453:356–360

    Article  PubMed  CAS  Google Scholar 

  47. Daugherty DL, Gellman SH (1999) A fluorescence assay for leucine zipper dimerization: Avoiding unintended consequences of fluorophore attachment. J Am Chem Soc 121:4325–4333

    Article  CAS  Google Scholar 

  48. West W, Pearce S (1965) Dimeric state of cyanine dyes. J Phys Chem 69:1894–1903

    Article  CAS  Google Scholar 

  49. Geoghegan KF, Rosner PJ, Hoth LR (2000) Dye-pair reporter systems for protein-peptide molecular interactions. Bioconjug Chem 11:71–77

    Article  PubMed  CAS  Google Scholar 

  50. Valdes-Aguilera O, Neckers DC (1989) Aggregation phenomena in xanthene dyes. Acc Chem Res 22:171–177

    Article  CAS  Google Scholar 

  51. Kikuchi K, Takakusa H, Nagano T (2004) Recent advances in the design of small molecule-based FRET sensors for cell biology. TrAC—Trends Anal Chem 23:407–415

    Article  CAS  Google Scholar 

  52. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  53. Larsson A, Carlsson C, Jonsson M, Albinnson N (1994) Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized-light spectroscopy. J Am Chem Soc 116:8459–8465

    Article  CAS  Google Scholar 

  54. Larsson A, Carlsson C, Jonsson M (1995) Characterization of the binding of YO to Poly(DA-DT)] (2) and [Poly(DG-DC)] (2), and of the fluorescent properties of YO and YOYO complexed with the polynucleotides and double-stranded DNA. Biopolymers 36:153–167

    Article  PubMed  CAS  Google Scholar 

  55. Nygren J, Andrade JM, Kubista M (1996) Characterization of a single sample by combining thermodynamic and spectroscopic information in spectral analysis. Anal Chem 68:1706–1710

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Paul Piunno, Dr. Sergei Musikhin, and Dr. Arkady Major for their assistance in acquiring fluorescence lifetimes. In addition, we thank NSERC for financial support of this research work, and for provision of a research fellowship to WRA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich J. Krull.

Additional information

The authors wish it to be known that they have participated equally in the experiments and preparation of this manuscript and should, in their opinion, be considered joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Algar, W.R., Massey, M. & Krull, U.J. Fluorescence Resonance Energy Transfer and Complex Formation Between Thiazole Orange and Various Dye-DNA Conjugates: Implications in Signaling Nucleic Acid Hybridization. J Fluoresc 16, 555–567 (2006). https://doi.org/10.1007/s10895-006-0091-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0091-y

Keywords

Navigation