Skip to main content
Log in

The Princeton Field-Reversed Configuration for Compact Nuclear Fusion Power Plants

  • Review Article
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

The Princeton Field-Reversed Configuration (PFRC) nuclear fusion reactor concept is an innovative approach to fusion power generation prioritizing low neutron production and small size. A combination of analytical modeling and numerical simulation shows that the novel heating approach generates an FRC with closed field lines. Simulation data from a single-particle Hamiltonian code predicts ms-scale plasma heating in reactor-scale conditions while PIC codes predict formation of warm FRC plasmas from initial mirror fields. The PFRC-1 and PFRC-2 experiments have heated electrons to energies well in excess of 100 eV and plasma durations to 300 ms, more than 10\(^4\) times longer than the predicted tilt instability growth time. From these data, we have created a development plan and anticipated performance metrics for a fusion reactor based on the PFRC concept. The resulting 1–10 MW PFRC reactors would be suitable for diverse applications, from submarines to urban environments to space propulsion. PFRC is a steady-state, driven magnetic confinement device. Plasma, inside a cylindrical array of coils, is confined and heated by external RF antennae. PFRC would be ultra-low radiation due to both its fuel and small size. The choice of advanced fuels, deuterium and helium-3 (D–3He), may be enabled by the high-\(\beta\) FRC configuration. The small size of the reactor would enable rapid exhaust of the dangerous tritium ash. Low radiation would make the reactor safer to operate and, in combination with simple geometry and small size, dramatically lowers development and maintenance costs. This review paper gives an introduction to the physics of the PFRC and a summary of the PFRC-2 experiment results to date. It then discusses the future program plan and how PFRC reactors would be commercialized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

Datasets used in this paper can be accessed by request to the authors.

References

  1. S.A.Cohen, M.Chu-Cheong, R.Feder, K.Griffin, M.Khodak, J.Klabacha, E.Meier, S.Newbury, M.Paluszek, T.Rognlien, S.Thomas, M.Walsh. Reducing neutron emission from small fusion rocket engines. In: IAC (2015). IAC-15,C4.7-C3.5,9,x28852

  2. E.S. Evans, S.A. Cohen, D.R. Welch, Particle-in-cell studies of fast-ion slowing-down rates in cool tenuous magnetized plasma. Phys. Plasmas 10(1063/1), 5022188 (2018)

    Google Scholar 

  3. S.A. Cohen, C. Swanson, N. McGreivy, A. Raja, E. Evans, P. Jandovitz, M. Khodak, G. Pajer, T.D. Rognlien, S. Thomas, M. Paluszek, Direct fusion drive for interstellar exploration. J. Br. Interplanet. Soc. 72(2), 38–50 (2019)

    Google Scholar 

  4. S.J.Thomas, M.Paluszek, S.Cohen, N.McGreivy, E.Evans. Fusion-Enabled Pluto Orbiter and Lander. In: Proceedings of the AIAA Space Forum (2017). https://doi.org/10.2514/6.2017-5276

  5. Y.S. Razin, G. Pajer, M. Breton, E. Ham, J. Mueller, M. Paluszek, A.H. Glasser, S.A. Cohen, A direct fusion drive for rocket propulsion. Acta Astronautica 105(1), 145–155 (2014). https://doi.org/10.1016/j.actaastro.2014.08.008

    Article  ADS  Google Scholar 

  6. J.Mueller, A.Knutson, M.Paluszek, G.Pajer, S.Cohen, A.H.Glasser, Direct Fusion Drive Rocket for Asteroid Deflection. In: 33rd IEPC (2013). IEPC-2013-296. http://www.iepc2013.org/get?id=296

  7. I.R. Jones, A review of rotating magnetic field current drive and the operation of the rotamak as a field-reversed configuration (Rotamak-FRC) and a spherical tokamak (Rotamak-ST). Phys. Plasmas 6, 1950 (1999). https://doi.org/10.1063/1.873452

    Article  ADS  Google Scholar 

  8. A.L. Hoffman, H.Y. Guo, J.T. Slough, S.J. Tobin, L.S. Schrank, W.A. Reass, G.A. Wurden, The TCS rotating magnetic field FRC current-drive experiment. Fusion Sci. Technol. 41(2), 92–106 (2002). https://doi.org/10.13182/FST02-A205

    Article  ADS  Google Scholar 

  9. R.D. Milroy, C.C. Kim, C.R. Sovinec, Extended magnetohydrodynamic simulations of field reversed configuration formation and sustainment with rotating magnetic field current drive. Phys. Plasmas 17(6), 062502 (2010). https://doi.org/10.1063/1.3436630

    Article  ADS  Google Scholar 

  10. S.A. Cohen, R.D. Milroy, Maintaining the closed magnetic-field-line topology of a field-reversed configuration with the addition of static transverse magnetic fields. Phys. Plasmas. 10(1063/1), 874094 (2000)

    Google Scholar 

  11. S.A. Cohen, A.H. Glasser, Ion heating in the field-reversed configuration by rotating magnetic fields near the ion-cyclotron resonance. Phys Rev Lett (2000). https://doi.org/10.1103/PhysRevLett.85.5114

    Article  Google Scholar 

  12. T. Ahsan, S.A. Cohen, An analytical approach to evaluating magnetic-field closure and topological changes in FRC devices. Phys Plasmas 29(7), 072507 (2022). https://doi.org/10.1063/5.0090163

    Article  ADS  Google Scholar 

  13. D. Welch, S.A. Cohen, T.C. Genoni, A.H. Glasser, Formation of field-reversed-configuration plasmas with punctuated-betatron-orbit electrons. Phys. Rev. Lett. 105, 015002 (2010). https://doi.org/10.1103/PhysRevLett.105.015002

    Article  ADS  Google Scholar 

  14. A.H. Glasser, S.A. Cohen, Ion and electron acceleration in the field-reversed configuration with an odd-parity rotating magnetic field. Phys Plasmas. 10(1063/1), 1459456 (2002)

    Google Scholar 

  15. S.A. Cohen, A.S. Landsman, A.H. Glasser, Stochastic ion heating in a field-reversed configuration geometry by rotating magnetic fields. Phys Plasmas 14, 072508 (2007). https://doi.org/10.1063/1.2746813

    Article  ADS  Google Scholar 

  16. A.H. Glasser, S.A. Cohen, Simulating single-particle dynamics in magnetized plasmas: The RMF code. Rev. Sci. Instrum. 93, 083506 (2022). https://doi.org/10.1063/5.0101665

    Article  ADS  Google Scholar 

  17. S.A. Cohen, B. Berlinger, C. Brunkhorst, A. Brooks, N. Ferarro, D. Lundberg, A. Roach, A.H. Glasser, Formation of collisionless high-\(\beta\) plasmas by odd-parity rotating magnetic fields. Phys. Rev. Lett 98, 145002 (2007). https://doi.org/10.1103/PhysRevLett.98.145002

    Article  ADS  Google Scholar 

  18. O. Seeman, I. Be’ery, A. Fisher, Stabilization of magnetic mirror machine using rotating magnetic field. J. Plasma Phys. (2018). https://doi.org/10.1017/S0022377818000971

    Article  Google Scholar 

  19. S.Cohen, C.Brunkhorst, A.Glasser, A.Landsman, D.Welch, RF plasma heating in the PFRC-2 device: Motivation, goals and methods. In: AIP Conference Proceedings, vol. 1406 (2011). https://doi.org/10.1063/1.3664976

  20. C.E. Myers, M.R. Edwards, B. Berlinger, A. Brooks, S.A. Cohen, Passive superconducting flux conservers for rotating-magnetic-field-driven field-reversed configurations. Fusion Sci. Technol. 61(1), 86–103 (2012). https://doi.org/10.13182/FST12-A13341

    Article  ADS  Google Scholar 

  21. B. Berlinger, A. Brooks, H. Feder, J. Gumbas, T. Franckowiak, S.A. Cohen, Use of polycarbonate vacuum vessels in high-temperature fusion-plasma research. Fusion Sci. Technol. 64(2), 298–302 (2013). https://doi.org/10.13182/FST13-A18093

    Article  ADS  Google Scholar 

  22. S.A.Cohen, D.Stotler, M.Buttolph, Fueling Method for Small, Steady-State, Aneutronic FRC Fusion Reactors. U.S. Patent 10,811,159 (2020)

  23. M.A.Paluszek, E.M.Ham, Y.Razin, S.A.Cohen, In space startup method for nuclear fusion rocket engines. U.S. Patent 10,229,756 (2019)

  24. M.A.Paluszek, S.J.Thomas, S.A.Cohen, Space nuclear power systems - direct fusion drive. In: 2018 International Energy Conversion Engineering Conference (2018). https://doi.org/10.2514/6.2018-4974

  25. H. Momota, A. Ishida, Y. Kohzaki, G.H. Miley, S. Ohi, M. Ohnishi, K. Sato, L.C. Steinhauer, Y. Tomita, M. Tuszewski, Conceptual design of the D-\(^3\)He reactor artemis. Fusion Technol. 21, 2307 (1992). https://doi.org/10.13182/FST92-A29724

  26. R. Chapman, G.H. Miley, W. Kernbichler, M. Heindler, Fusion space propulsion with a field reversed configuration. Fusion Technol. 15,1154 (1989). https://doi.org/10.13182/FST89-A39849

  27. H. Nakashima, G.H. Miley, Y. Nakao, Field reversed configuration (FRC) fusion rocket. AIP Conf Proceed. 301, 1311 (1994). https://doi.org/10.1063/1.2950141

    Article  ADS  Google Scholar 

  28. V.I. Khvesyuk, S.V. Ryzhkov, J.F. Santarius, G.A. Emmert, C.N. Nguyen, L.C. Steinhauer, D-\(^3\)He field reversed configuration fusion power plant. Fusion Technol. 39, 410 (2001). https://doi.org/10.13182/FST01-A11963492

  29. S.Thomas, C.Swanson, M.Paluszek, S.Cohen, S.Turyshev, Fusion propulsion and power for extrasolar exploration. In: IAF Space Propulsion Symposium, International Astronautical Congress (2019)

  30. M. Tuszewski, Field reversed configuration confinement enhancement through edge biasing and neutral beam injection. Phys Rev Lett 108, 255008 (2012). https://doi.org/10.1103/PhysRevLett.108.255008

    Article  ADS  Google Scholar 

  31. M.W. Binderbauer, T. Tajima, L.C. Steinhauer et al., A high performance field-reversed configuration. Phys Plasmas 22(5), 056110 (2015). https://doi.org/10.1063/1.4920950

    Article  ADS  Google Scholar 

  32. E.A. Baltz, E. Trask, M. Binderbauer, M. Dikovsky, H. Gota, R. Mendoza, J.C. Platt, P.F. Riley, Achievement of Sustained Net Plasma Heating in a Fusion Experiment with the Optometrist Algorithm. Sci Rep 7, 6425 (2017). https://doi.org/10.1038/s41598-017-06645-7

    Article  ADS  Google Scholar 

  33. H. Gota, M.W. Binderbauer, T. Tajima et al., Overview of C-2W: high temperature, steady-state beam-driven field-reversed configuration plasmas. Nuclear Fusion 61(106039), (2021). https://doi.org/10.1088/1741-4326/ac2521

  34. K.Nguyen, T.Kammash, :Classical Transport Coefficients in A Field-Reversed Configuration. Plasma Physics 24(2) (1982)

  35. A. Ishida, H. Momota, L.C. Steinhauer, Variational formulation for a multifluid flowing plasma with application to the internal tilt mode of a field-reversed configuration. Phys Fluids 31(10), 3024–3034 (1988). https://doi.org/10.1063/1.866959

    Article  ADS  MATH  Google Scholar 

  36. J.Lyman Spitzer, Physics of Fully Ionized Gases, 2nd edn., p. 145 (1962)

  37. C.Swanson, P.Jandovitz, S.A.Cohen, Using Poisson-regularized inversion of Bremsstrahlung emission to extract full electron energy distribution functions from x-ray pulse-height detector data. In: AIP Advances, vol. 8, p. 025222 (2018). https://doi.org/10.1063/1.5019572

  38. C.Biava, G.Wilkie, A.Dogariu, S.Cohen, Modeling spatially resolved neutral atom densities in the PFRC-2 using DEGAS 2. In: 63rd Annual Meeting of the APS Division of Plasma Physics (2021)

  39. C.A. Galea, C.P.S. Swanson, S.A. Cohen, S.J. Thomas, Use of a Mylar filter to eliminate vacuum ultraviolet pulse pileup in low-energy x-ray measurements. Rev. Sci. Instrum. 93(9), 093531 (2022). https://doi.org/10.1063/5.0101712

    Article  ADS  Google Scholar 

  40. M. Notis, A.Glasser, S.Cohen, S.Abe, Electrostatic Energy Analyzer and Gas Stripping Cell to Measure Ion Temperature in the PFRC-2. In: APS Division of Plasma Physics Meeting Abstracts. APS Meeting Abstracts, vol. 2021, pp. 11–192 (2021). https://ui.adsabs.harvard.edu/abs/2021APS..DPPJP1192N

  41. J.A.Sims, Jupiter Icy Moons Orbiter Mission Design Overview. In: AAS/AIAA Space Flight Mechanics Conference, Tampa, Florida (2006)

  42. J.Staff, Prometheus project final report. Technical Report 982-R120461, Jet Propulsion Laboratory (October 2005)

  43. J. Gould, All-electric brigades? (US Army official says it’s coming sooner than you’d think, Defense News, 2017)

  44. J.Trevithick, The Army Wants Its Brigades To Be Able To Fight For An Entire Week Without Resupply. The War Zone (2018)

  45. S.J.Matthews, Small Tactical Electric Power. CERDEC CPI Power Division (2015). https://arpa-e.energy.gov/sites/default/files/Matthew_CERDEC_GENSETS_FINAL.pdf Accessed 08-18-2022

  46. J.Keller, Navy to test large unmanned submarine next year in open-ocean voyage down the california coast. Military + Aerospace Electronics (2015). Accessed 2022-08-18

  47. M.L.Jones, Remote-Site Power Generation Opportunities for Alaska, Topical Report. Technical Report DE-FC21-93MC30098, Energy and Environmental Research Center (March 1997)

  48. Hatch: SMR Deployment Feasibility Study: Feasibility of the Potential Deployment of Small Modular Reactors (SMRs) in Ontario. Technical Report H350381-00000-162-066-0001, Rev. 0, Ontario Ministry of Energy (June 2016)

  49. V.I. Khvesyuk, A.Y. Chirkov, Low-radioactivity D-\(^3\)He fusion fuel cycles with \(^3\)He production. Plasma Phys Controll Fusion (2002). https://doi.org/10.1088/0741-3335/44/2/308

    Article  Google Scholar 

  50. J. Kesner, DT, Garnier,A.Hansen, M.Mauel, L.Bromberg, Helium catalyzed D-D fusion in a levitated dipole. Nuclear Fusion 44, 193 (2004)

  51. L.J.Wittenberg, J.F.Santarius, G.L.Kulcinski. Lunar Sources of \(^3\)He for commercial fusion power. Fusion Technol. 10, 167 (1986). https://doi.org/10.13182/FST86-A24972

  52. NREL.gov: Simple levelized cost of energy (LCOE) calculator documentation. Accessed 2022-08-19

Download references

Acknowledgements

This work was supported in part by ARPA-E grant DE-AR0001099, a NASA Innovative Advanced Concepts (NIAC) Grant NNX16AK28G and NASA STTRs NNX17CM47P and NNX17CC74P.

Funding

Advanced Research Projects Agency - Energy (ARPA-E), DE-AR0001099.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this work.

Corresponding author

Correspondence to Christopher Galea.

Ethics declarations

Conflict of interests

No competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galea, C., Thomas, S., Paluszek, M. et al. The Princeton Field-Reversed Configuration for Compact Nuclear Fusion Power Plants. J Fusion Energ 42, 4 (2023). https://doi.org/10.1007/s10894-023-00342-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10894-023-00342-2

Keywords

Navigation