Skip to main content
Log in

Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The outcome of plant-mediated interactions among herbivores from several feeding guilds has been studied intensively. However, our understanding on the effects of nematode root herbivory on leaf miner oviposition behavior and performance remain limited. In this study, we evaluated whether Meloidogyne incognita root herbivory affects Tuta absoluta oviposition preference on Solanum lycopersicum plants and the development of the resulting offspring. To investigate the M. incognita-herbivory induced plant systemic responses that might explain the observed biological effects, we measured photosynthetic rates, leaf trypsin protease inhibitor activities, and analyzed the profile of volatiles emitted by the leaves of root-infested and non-infested plants. We found that T. absoluta females avoided laying eggs on the leaves of root-infested plants, and that root infestation negatively affected the pupation process of T. absoluta. These effects were accompanied by a strong suppression of leaf volatile emissions, a decrease in photosynthetic rates, and an increase in the activity of leaf trypsin protease inhibitors. Our study reveals that root attack by nematodes can shape leaf physiology, and thereby increases plant resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agrawal AA (2004) Resistance and susceptibility of milkweed: competition, root herbivory, and plant genetic variation. Ecology 85:2118–2133

    Article  Google Scholar 

  • Anderson P, Sabek MM, Wackers FL (2011) Root herbivory affects oviposition and feeding behavior of a foliar herbivore. Behav Ecol 22:1272–1277

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  CAS  PubMed  Google Scholar 

  • Bede JC, McNeil JN, Tobe SS (2007) The role of neuropeptides in caterpillar nutritional ecology. Peptides 28:185–196

    Article  CAS  PubMed  Google Scholar 

  • Bernays EA, Chapman RF (1994) Host-plant selection by phytophagous insects. Springer Science & Business Media TS

  • Beyaert I, Hilker M (2014) Plant odour plumes as mediators of plant–insect interactions. Biol Rev 89:68–81

    Article  PubMed  Google Scholar 

  • Bezemer TM, van Dam NM (2005) Linking aboveground and belowground interactions via induced plant defenses. Trends Ecol Evol 20:617–624

    Article  PubMed  Google Scholar 

  • Bezemer TM, Wagenaar R, van Dam NM, Wäckers FL (2002) Interactions between root and shoot feeding insects are mediated by primary and secondary plant compounds. Proc Exp Appl Entomol 13:117–121

    Google Scholar 

  • Bezemer TM, Wagenaar R, van Dam NM, Wäckers FL (2003) Interactions between above- and belowground insect herbivores as mediated by the plant defense system. Oikos 101:555–562

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  • Broadway RM, Duffey SS (1986) Plant proteinase inhibitors: mechanism of action and effect on the growth and digestive physiology of larval Heliothis zea and Spodoptera exiqua. J Insect Physiol 32:827–833

    Article  CAS  Google Scholar 

  • Bruce TJA, Pickett JA (2011) Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry 72:1605–1611

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  CAS  PubMed  Google Scholar 

  • Clavijo McCormick A, Unsicker SB, Gershenzon J (2012) The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17:303–310

    Article  CAS  PubMed  Google Scholar 

  • Curtinhas JN (2011) Oviposição de Tuta absoluta (Lepidoptera: Gelechiidae) em genótipos de tomate: O papel da experiência. Universidade Federal de Viçosa

  • de Oliveira EF, Pallini A, Janssen A (2016) Herbivores with similar feeding modes interact through the induction of different plant responses. Oecologia 180:1–10

    Article  PubMed  Google Scholar 

  • Dunn JP, Frommelt K (1998) Effects of below-ground herbivory by Diabrotica virgifera virgifera (Col., Chrysomelidea) and soil moisture on leaf gas exchange of maize. J Appl Entomol 122:179–183

    Article  Google Scholar 

  • Ennis D, Despland E, Chen F, Forgione P, Bauce E (2016) Spruce budworm feeding and oviposition are stimulated by monoterpenes in white spruce epicuticular waxes. Insect Sci. doi:10.1111/1744-7917.12279

    PubMed  Google Scholar 

  • Erb M, Robert CAM, Marti G, Lu J, Doyen GR, Villard N, Barrière Y, French BW, Wolfender JL, Turlings TC, Gershenzon J (2015) A physiological and behavioral mechanism for leaf herbivore-induced systemic root resistance. Plant Physiol 169:2884–2894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrieri AP, Arce CCM, Machado RAR, Meza-Canales ID, Lima R, Baldwin IT, Erb M (2015) A cell wall invertase inhibitor (NaCWII) reduces growth and increases secondary metabolite biosynthesis in herbivore-attacked plants. New Phyt 208(2):519–530

  • Godfrey LD, Meinke LJ, Wright RJ (1993) Vegetative and reproductive biomass accumulation in-field corn – response to root injury by western corn-rootworm (Coleoptera, Chrysomelidae). J Econ Entomol 86:1557–1573

    Article  Google Scholar 

  • Guedes RNC, Picanço MC (2012) The tomato borer Tuta absoluta in South America: Pest status, management and insecticide resistance. EPPO Bull 42:211–216

    Article  Google Scholar 

  • Hartlieb E, Rembold H (1996) Behavioral response of female Helicoverpa ( Heliothis) armigera HB. (Lepidoptera: Noctuidae) moths to synthetic pigeonpea (Cajanus cajan L.) kairomone. J Chem Ecol 22:821–837

    Article  CAS  PubMed  Google Scholar 

  • Hesterlee S, Morton DB (1996) Insect physiology: the emerging story of ecdysis. Curr Biol 6:648–650

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, Ekbom B, Henkow L (1998) Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. J Chem Ecol 24:1203–1216

    Article  CAS  Google Scholar 

  • Hussey RS, Baker KR (1973) Comparison of methods of collecting inocula for Meloidogyne spp., including a new technique. Plant Dis Report 57:1025–1028

    Google Scholar 

  • Jaenike J (1978) On optimal oviposition behavior in phytophagous insects. Theor Popul Biol 14:350–356

    Article  CAS  PubMed  Google Scholar 

  • Jimenez-Aleman GH, Machado RA, Görls H, Baldwin IT, Boland W (2015) Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones. ‎Org Biomol Chem 13:5885–5893

  • Johnson SN, Clark KE, Hartley SE, Jones TH, McKenzie SW, Koricheva J (2012) Aboveground-belowground herbivore interactions: a meta-analysis. Ecology 93:2208–2215

    Article  PubMed  Google Scholar 

  • Kabouw P, Kos M, Kleine S, Vockenhuber EA, Van Loon JJ, Van der Putten WH, Van Dam NM, Biere A (2011) Effects of soil organisms on aboveground multitrophic interactions are consistent between plant genotypes mediating the interaction. Entomol Exp Appl 139:197–206

    Article  CAS  Google Scholar 

  • Kakade ML, Rackis JJ, McGhee JE, Puski G (1974) Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chem 51:376–382

  • Kaplan I, Denno RF (2007) Interspecific interactions in phytophagous insects revisited: a quantitative assessment of competition theory. Ecol Lett 10:977–994

    Article  PubMed  Google Scholar 

  • Kaplan I, Halitschke R, Kessler A, Sardanelli S, Denno RF (2008) Constitutive and induced defenses to herbivory in above-and belowground plant tissues. Ecology 89:392–406

    Article  PubMed  Google Scholar 

  • Karlsson MF, Birgersson G, Cotes Prado AM, Bosa F, Bengtsson M, Witzgall P (2009) Plant odor analysis of potato: response of Guatemalan moth to above-and belowground potato volatiles. J Agric Food Chem 57:5903–5909

    Article  CAS  PubMed  Google Scholar 

  • Kessler A, Baldwin IT (2002) Plant responses to insect herbivory. Annu Rev Plant Biol 53:299–328

    Article  CAS  PubMed  Google Scholar 

  • Kutyniok M, Müller C (2012) Crosstalk between above-and belowground herbivores is mediated by minute metabolic responses of the host Arabidopsis thaliana. J Exp Bot 63:6199–6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopes CA, Ávila ACM-C (eds) (2005) Doenças do tomateiro. Embrapa Hortaliças

  • Machado RAR, Ferrieri AP, Robert CAM, Glauser G, Kallenbach M, Baldwin IT, Erb M (2013) Leaf-herbivore attack reduces carbon reserves and regrowth from the roots via jasmonate and auxin signaling. New Phytol 200:1234–1246

    Article  CAS  PubMed  Google Scholar 

  • Machado RAR, Arce C, Ferrieri AP, Baldwin IT, Erb M (2015) Jasmonate-dependent depletion of soluble sugars compromises plant resistance to Manduca sexta. New Phytol 207:91–105

    Article  CAS  PubMed  Google Scholar 

  • Machado RAR, McClure M, Hervé M, Baldwin IT, Erb M (2016a) Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature. Elife 5:e13720

  • Machado RA, Robert CA, Arce CC, Ferrieri AP, Xu S, Jimenez-Aleman GH, Erb M (2016b) Auxin is rapidly induced by herbivory attack and regulates systemic, jasmonate-dependent defenses. Plant Physiol pp–00940

  • Masters GJ, Brown VK (1992) Plant-mediated interactions between two spatially separated insects. Funct Ecol 6:175–179

    Article  Google Scholar 

  • Matt P, Krapp A, Haake V, Mock HP, Stitt M (2002) Decreased Rubisco activity leads to dramatic changes of nitrate metabolism, amino acid metabolism and the levels of phenylpropanoids and nicotine in tobacco antisense RBCS transformants. Plant J 30:663–677

    Article  CAS  PubMed  Google Scholar 

  • Mihsfeldt LH, Parra JRP (1999) Biologia de Tuta absoluta (Meyrick, 1917) em dieta artificial. Sci Agric 56:769–776

    Article  Google Scholar 

  • Miranda MMM, Picanço M, Zanuncio JC, Guedes RNC (1998) Ecological life table of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Biocontrol Sci Tech 8:597–606

    Article  Google Scholar 

  • Murray PJ, Dawson LA, Grayston SJ (2002) Influence of root herbivory on growth response and carbon assimilation by white clover plants. Appl Soil Ecol 20:97–105

    Article  Google Scholar 

  • Neveu N, Grandgirard J, Nenon JP, Cortesero AM (2002) Systemic release of herbivore-induced plant volatiles by turnips infested by concealed root- feeding larvae Delia radicum L. J Chem Ecol 28:1717–1732

    Article  CAS  PubMed  Google Scholar 

  • Pierre PS, Jansen JJ, Hordijk CA, Van Dam NM, Cortesero AM, Dugravot S (2011) Differences in volatile profiles of turnip plants subjected to single and dual herbivory above-and below-ground. J Chem Ecol 37:368–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poelman EH, Broekgaarden C, van Loon JJA, Dicke M (2008) Early season herbivore differentially affects plant defence responses to subsequently colonizing herbivores and their abundance in the field. Mol Ecol 17:3352–3365

    Article  CAS  PubMed  Google Scholar 

  • Proffit M, Birgersson G, Bengtsson M, Reis R Jr, Witzgall P, Lima E (2011) Attraction and oviposition of Tuta absoluta females in response to tomato leaf volatiles. J Chem Ecol 37:565–574

    Article  CAS  PubMed  Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. The R foundation for statistical computing. ISBN: 3–900051–07-0, Vienna, Austria

  • Rasmann S, Turlings TCJ (2007) Simultaneous feeding by aboveground and belowground herbivores attenuates plant-mediated attraction of their respective natural enemies. Ecol Lett 10:926–936

    Article  PubMed  Google Scholar 

  • Renwick JAA, Chew FS (1994) Oviposition behavior in Lepidoptera. Annu Rev Entomol 39:377–400

    Article  Google Scholar 

  • Ryan CA (1989) Proteinase inhibitor gene families: strategies for transformation to improve plant defenses against herbivores. BioEssays 10:20–24

    Article  CAS  PubMed  Google Scholar 

  • Sarmento RA, Lemos F, Bleeker PM, Schuurink RC, Pallini A, Oliveira MGA, Lima ER, Kant M, Sabelis MW, Janssen A (2011) A herbivore that manipulates plant defence. Ecol Lett 14:229–236

  • Sellami S, Jamoussi K (2016) Investigation of larvae digestive β-glucosidase and proteases of the tomato pest Tuta absoluta for inhibiting the insect development. Bull Entomol Res 106:1–9

    Article  Google Scholar 

  • Soler R, Bezemer TM, Van Der Putten WH, Vet LE, Harvey JA (2005) Root herbivore effects on above- ground herbivore, parasitoid and hyperparasitoid performance via changes in plant quality. J Anim Ecol 74:1121–1130

    Article  Google Scholar 

  • Soler R, Harvey JA, Kamp AFD, Vet LE, Van der Putten WH, Van Dam NM, Stuefer JF, Gols R, Hordijk CA, Martijn Bezemer T (2007) Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376

    Article  CAS  Google Scholar 

  • Soler R, Harvey JA, Rouchet R, Schaper SV, Martijn Bezemer T (2010) Impacts of belowground herbivory on oviposition decisions in two congeneric butterfly species. Entomol Exp Appl 136:191–198

    Article  Google Scholar 

  • Soler R, Erb M, Kaplan I (2013) Long distance root-shoot signalling in plant-insect community interactions. Trends Plant Sci 18:149–156

    Article  CAS  PubMed  Google Scholar 

  • Späthe A, Reinecke A, Olsson SB, Kesavan S, Knaden M, Hansson BS (2012) Plant species-and status-specific odorant blends guide oviposition choice in the moth Manduca sexta. Chem Senses 38:1–13

    Google Scholar 

  • Staley JT, Mortimer SR, Morecroft MD (2008) Drought impacts on above–belowground interactions: do effects differ between annual and perennial host species? Basic Appl Ecol 9:673–681

    Article  Google Scholar 

  • Strapasson P, Pinto-Zevallos DM, Paudel S, Rajotte EG, Felton GW, Zarbin PH (2014) Enhancing plant resistance at the seed stage: low concentrations of methyl jasmonate reduce the performance of the leaf miner Tuta absoluta but do not alter the behavior of its predator Chrysoperla externa. J Chem Ecol 40:1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Tasin M, Bäckman A-C, Bengtsson M, Ioriatti C, Witzgall P (2006) Essential host plant cues in the grapevine moth. Naturwissenschaften 93:141–144

    Article  CAS  PubMed  Google Scholar 

  • Thompson JN, Pellmyr O (1991) Evolution of oviposition behavior and host preference in Lepidoptera. Annu Rev Entomol 36:65–89

    Article  Google Scholar 

  • van Dam NM, Raaijmakers CE (2006) Local and systemic induced responses to cabbage root fly larvae (Delia radicum) in Brassica nigra and B. oleracea. Chemoecology 16:17–24

    Article  Google Scholar 

  • van Dam NM, Raaijmakers CE, Van der Putten WH (2005) Root herbivory reduces growth and survival of the shoot feeding specialist Pieris rapae on Brassica nigra. Entomol Exp Appl 115:161–170

    Article  Google Scholar 

  • Wondafrash M, van Dam NM, Tytgat TOG (2013) Plant systemic induced responses mediate interactions between root parasitic nematodes and aboveground herbivorous insects. Front Plant Sci 4:165–179

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jay Rosenheim, Ash Zemenick, Michael Culshaw-Maurer, Madelaine Venzon, Jeremy McNeil, Matthias Erb and Arne Janssen for critically reading the manuscript; and to FAPEMIG, CAPES, CNPq, and INCT–Semiochemicals on Agriculture for financial support. We also thank Felipe Lemos for helping with the GC measurments. CA was supported by FAPEMIG and CAPES (BPD-00065-14) and AP by FAPEMIG and CNPq.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carla C. M. Arce or Eraldo Lima.

Electronic supplementary material

Online Resource Fig. 1

Control and Meloidogyne incognita-infested tomato plants 20 d after nematode egg inoculation (PDF 484 kb)

Online Resource Fig. 2

Experimental set up for aboveground volatile collection (PDF 46 kb)

Online Resource Fig. 3

Total Ion chromatograms (TICs) from blank (empty glass chamber), control tomato plants and root-infested plants. Arrows highlight volatile compounds that statistically differed between treatments (1: α-pinene; 2: α-terpinene; 3: β-phellandrene; 4: β-caryophyllene; 5: α-humulene; 6: Unknown 1; 7: Unknown 2; 8: Unknown 3; and Internal Standard: N-heptyl-acetate). (PDF 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arce, C.C.M., Machado, R.A.R., Ribas, N.S. et al. Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance. J Chem Ecol 43, 120–128 (2017). https://doi.org/10.1007/s10886-016-0810-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-016-0810-z

Keywords

Navigation