Skip to main content
Log in

Chemical Polymorphism in Defense Secretions during Ontogenetic Development of the Millipede Niponia nodulosa

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

A mixture of defense compounds (benzaldehyde, benzoyl cyanide, benzoic acid, mandelonitrile, and mandelonitrile benzoate), found commonly in cyanogenic polydesmid millipedes, was identified in the non-cyanogenic millipede Niponia nodulosa. These compounds were major components in 1st–4th instars, but were absent in older instars and adults. Extracts of older instars and adults contained 1-octen-3-ol, 2-methyl-2-bornene, E-2-octen-1-ol, 2-methyl-isoborneol, and geosmin; these compounds were minor components in 1st–4th instars. This ontogenetic allomone shift may be explained by the high cost of biosynthesis of polydesmid compounds from L-phenylalanine being offset by their potency in protecting the insect during fragile and sensitive growth stages. However, as the cuticle hardens in older juveniles (5th, 6th, 7th instars) and adults, this allows for a switch in defense to using less effective and less costly volatile organic compounds (presumably microbial in origin) that are ubiquitous in the millipede’s habitat or are produced by symbiotic microbes and may be readily available through food intake or aspiration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aldrich JA (1988) Chemical ecology of the heteroptera. Annu Rev Entomol 33:211–238

    Article  Google Scholar 

  • Bodner M, Raspotnig G (2012) Millipedes that smell like bugs: (E)-alkenals in the defensive secretion of the julid diplopod Allajulus dicentrus. J Chem Ecol 38:547–556

    Article  CAS  PubMed  Google Scholar 

  • Cho IH, Kim SY, Choi H-K, Kim Y-S (2006) Characterization of aroma-active compounds in raw and cooked pine-mushrooms (Tricholoma matsutake Sing.). J Agric Food Chem 54:6332–6335

    Article  CAS  PubMed  Google Scholar 

  • Dickschat JS, Martens T, Brinkhoff T, Simon M, Schulz S (2005) Volatiles released by a Streptomyces species isolated from the north Sea. Chem Biodivers 2:837–865. doi:10.1002/cbdv.200590062

    Article  CAS  PubMed  Google Scholar 

  • Dionigi CP, Miillie DF, Spanier AM, Johnsen PB (1991) Spore and geosmin production by Streptomyces tendae on several media. J Agric Food Chem 40:122–125

    Article  Google Scholar 

  • Duffey SS, Underhill EW, Towers GHN (1974) Intermediates in the biosynthesis of HCN and benzaldehyde by a polydesmid millipede, Harpaphe haydeniana (Wood). Comp Biochem Physiol 47B:753–766

  • Eisner T, Alsop D, Hicks K, Meinwald J (1978) Defensive secretion of millipedes. In: Bettini S (ed) Arthropod venoms, handbook of experimental pharmacology, vol 48. Springer, Berlin, pp 41–72

    Chapter  Google Scholar 

  • Engels E, Engels W, Luebke G, Schroeder W, Francke W (1993) Age-related patterns of volatile cephalic constituents in Scaptotrigona postica Latr (Hymenoptera, Apidae). Apidologie 24:539–548

    Article  CAS  Google Scholar 

  • Fischer G, Schwalbe R, Moeller M, Ostrowski R, Dott W (1999) Species-specific production of microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810

    Article  CAS  PubMed  Google Scholar 

  • Gerber NN, Lechevalier HA (1965) Geosmin an earthy-smelling substance isolated from Actinomycetes. Appl Microbiol 13:935–938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jensen SE, Anders C, Goatcher L, Perley T, Kenefick S, Hrudey S (1994) Actinomycetes as a factor in odour problem affecting drinking water from the North Saskatchwan River. Water Res 28:1393–1401

    Article  CAS  Google Scholar 

  • Kheyri H, Cribb BW, Merritt DJ (2014) The comparative morphology of epidermal glands in Pentatomoidea (Heteroptera). Arthropodan Struct Dev. doi:10.1016/j.asd.2014.04.004

    Google Scholar 

  • Kovat E (1958) Gas-chromatographische Charakterisierung organischer Verbindungen. Teil 1: Retentionsindices aliphatischer Halogenide, Alkohole, Aldehyde und Ketone. Helv Chim Acta 41:1915–1932

  • Kuwahara Y, Ômura H, Tanabe T (2002) 2-Nitroethenylbenzene as natural products in millipede defense secretions. Naturwissenschaften 89:308–310

    Article  CAS  PubMed  Google Scholar 

  • Kuwahara Y, Mori N, Sakuma M, Tanabe T (2003) (1Z)- and (1E)-2-Nitroethenylbenzenes, and 2-nitroethylbenzene as natural products in defense secretions of a millipede Thelodesmus armatus Miyosi (Polydesmida: Pyrgodesmidae. Jpn J Environ Entomol Zool 14:149–155

  • Kuwahara Y, Shimizu N, Tanabe T (2011) Release of hydrogen cyanide via post-secretion Schotten-Baumann reaction in defensive fluids of Polydesmoid Millipedes. J Chem Ecol 37:232–238

    Article  CAS  PubMed  Google Scholar 

  • Leal WS, Panizzi AR, Niva CC (1994) Alarm pheromone system of leaf-footed bug Leptoglossus zonatus (Heteroptera: Coreidae). J Chem Ecol 20:1209–1216

    Article  CAS  Google Scholar 

  • Lovell RT, Sackey LA (1973) Absorption by channel catfish of earthy-musty flavor compounds synthesized by cultures of blue-green algae. Trans Am Fish Soc 102:774–777

    Article  Google Scholar 

  • Lovell RT, Lelana IY, Boyd CC, Armstrong MS (1986) Geosmin and musty-muddy flavors in pond raised channel catfish. Trans Am Fish Soc 115:485–489

    Article  CAS  Google Scholar 

  • Martin JF, McCOY CP, Greenleaf W, Bennett L (1987) Analysis of 2-methylisoborneol in water, mud, and channel catfish from commercial culture ponds in Mississippi. Can J Fish Aquat Sci 44:909–912

    Article  CAS  Google Scholar 

  • Mills OE, Chung S-Y, Johnsen PB (1993) Dehydration products of 2-methylisoborneol are not responsible for off-flavor in the channel catfish. J Agric Food Chem 41:1690–1692

    Article  CAS  Google Scholar 

  • Mondor EB, Baird DS, Slessor KN, Roitberg BD (2000) Ontogeny of alarm pheromone secretion in pea aphid, Acyrthosiphon pisum. J Chem Ecol 26:2875–2882

    Article  CAS  Google Scholar 

  • Mori N, Kuwahara Y, Yoshida T, Nishida R (1994) Identification of benzaldehyde, phenol and mandelonitrile from Epanerchodus japonicus Carl (Polydesmida: Polydesmidae) as possible defense substances. Appl Entomol Zool 29:517–522

    CAS  Google Scholar 

  • Murakami Y (1993) Dipropoda. In: “List of wild animals in Japan (5)”, list of wild life in Japan (nonvertebrate part), (the environmental protection agency of Japan, ed.). Natural Environment Research Center, Tokyo, pp 95–102 (in Japanese)

    Google Scholar 

  • Noge K, Kimura H, Abe M, Becerra JX, Tomogami S (2012) Antibacterial activity of 4-oxo-(E)-2-hexenal from adults and nymphs of the heteropteran, Dolycoris baccarum (Heteroptera: Pentatomidae). Biosci Biotechnol Biochem 76:1975–1978

  • Norton RA (1998) Morphological evidence for the evolutionary origin of Astigmata (Acari: Acariformes). Exp Appl Acarol 22:559–594

    Article  Google Scholar 

  • Ômura H, Kuwahara Y, Tanabe T (2002) 1-Octen-3-ol together with geosmin: new secretion compounds from a polydesmid millipede, Niponia nodulosa. J Chem Ecol 28:2601–2612

    Article  PubMed  Google Scholar 

  • Pasteels JM, Grégoire J-C, Rowell-Rahier M (1983) The chemical ecology of defense in arthropods. Annu Rev Entomol 28:263–289

    Article  CAS  Google Scholar 

  • Prudic KL, Noge K, Becerra JX (2008) Adults and nymphs do not smell the same: the different defensive compounds of the giant mesquits bug (Thasus neocalifornicus: Coreidae). J Chem Ecol 34:734–741

  • Raspotnig G, Krisper G, Schuster R (2005) Ontogenetic changes in the chemistry and morphology of oil glands in Hermannia convexa (Acari: Oribatida). Exp Appl Acarol 35:47–58

    Article  CAS  PubMed  Google Scholar 

  • Raspotnig G, Kaiser R, Stabentheiner E, Leis H-J (2008) Chrysomelidial in the opisthonotal glands of the oribatid mite, Oribotritia berlesei. J Chem Ecol 34:1081–1088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shimano S, Sakata T, Mizutani Y, Kuwahara Y, Aoki J (2002) Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J Chem Ecol 28:1831–1837

    Article  CAS  PubMed  Google Scholar 

  • Shinohara K (1999) Life of a Japanese millipede, Niponia nodulosa. Insectarium 18:82–86 (in Japanese)

  • Taira J, Nakamura K, Higa Y (2003) Identification of secretory compounds from the millipede, Oxidus gracilis C. L. Koch (Polydesmida: Paradoxomatidae) and their variation in different habitats. Appl Entomol Zool 38:401–404

  • Takada W, Sakata T, Shimano S, Enami Y, Mori N, Nishida R, Kuwahara Y (2005) Schloribatid mites as the source of pumiliotoxins in Dendrobatid frogs. J Chem Ecol 31:2403–2415

    Article  CAS  PubMed  Google Scholar 

  • Wood N, Snoeyink V (1977) 2-Methylisoborneol, improved synthesis and a quantitative gas chromatographic method for trace concentration producing odor in water. J Chromatogr 132:405–420

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasumasa Kuwahara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuwahara, Y., Ichiki, Y., Morita, M. et al. Chemical Polymorphism in Defense Secretions during Ontogenetic Development of the Millipede Niponia nodulosa . J Chem Ecol 41, 15–21 (2015). https://doi.org/10.1007/s10886-014-0536-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0536-8

Keywords

Navigation