Skip to main content

Advertisement

Log in

Direct and Indirect Effects of Invasive Plants on Soil Chemistry and Ecosystem Function

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Invasive plants have a multitude of impacts on plant communities through their direct and indirect effects on soil chemistry and ecosystem function. For example, plants modify the soil environment through root exudates that affect soil structure, and mobilize and/or chelate nutrients. The long-term impact of litter and root exudates can modify soil nutrient pools, and there is evidence that invasive plant species may alter nutrient cycles differently from native species. The effects of plants on ecosystem biogeochemistry may be caused by differences in leaf tissue nutrient stoichiometry or secondary metabolites, although evidence for the importance of allelochemicals in driving these processes is lacking. Some invasive species may gain a competitive advantage through the release of compounds or combinations of compounds that are unique to the invaded community—the “novel weapons hypothesis.” Invasive plants also can exert profound impact on plant communities indirectly through the herbicides used to control them. Glyphosate, the most widely used herbicide in the world, often is used to help control invasive weeds, and generally is considered to have minimal environmental impacts. Most studies show little to no effect of glyphosate and other herbicides on soil microbial communities. However, herbicide applications can reduce or promote rhizobium nodulation and mycorrhiza formation. Herbicide drift can affect the growth of non-target plants, and glyphosate and other herbicides can impact significantly the secondary chemistry of plants at sublethal doses. In summary, the literature indicates that invasive species can alter the biogeochemistry of ecosystems, that secondary metabolites released by invasive species may play important roles in soil chemistry as well as plant-plant and plant-microbe interactions, and that the herbicides used to control invasive species can impact plant chemistry and ecosystems in ways that have yet to be fully explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd-alla, M. H., Omar, S. A., and Karanxha, S. 2000. The impact of pesticides on arbuscular mycorrhizal and nitrogen-fixing symbioses in legumes. Appl. Soil Ecol. 14:191–200.

    Article  Google Scholar 

  • Agrawal, A. A. 1998. Plant performance induced responses to herbivory and increased plant performance. Science 279:1201–1202.

    Article  PubMed  CAS  Google Scholar 

  • Alla, M. M. N., and Younis, M. E. 1995. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedlings. J. Exp. Bot. 46:1731–1736.

    Article  Google Scholar 

  • Allison, S. D., and Vitousek, P. M. 2004. Rapid nutrient cycling in leaf letter from invasive plants in Hawai’i. Oecologia 141:612–619.

    Article  PubMed  Google Scholar 

  • Alonso-Amelot, M. E., Castillo, U., Smith, B. L., and Lauren, D. R. 1998. Excretion, through milk, of ptaquiloside in bracken-fed cows. A quantitative assessment. Lait 78:413–423.

    Article  CAS  Google Scholar 

  • Angers, D. A., and Caron, J. 1998. Plant-induced changes in soil structure: processes and feedbacks. Biogeochemistry 42:55–72.

    Article  Google Scholar 

  • Araújo, A. S. F., Monteiro, R. T. R., and Abarkeli, R. B. 2003. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere 52:799–804.

    Article  PubMed  CAS  Google Scholar 

  • Ashton, I. W., Hyatt, L. A., Howe, K. M., Gurevitch, J., and Lerdau, M. T. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol. Appl. 15:1263–1272.

    Article  Google Scholar 

  • Batten, K. M., Six, J., Scowa, K. M., and Rillig, M. C. 2005. Plant invasion of native grassland on serpentine soils has no major effects upon selected physical and biological properties. Soil Biol. Biochem. 37:2277–2282.

    Article  CAS  Google Scholar 

  • Baylis, A. D. 2000. Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag. Sci. 56:299–308.

    Article  CAS  Google Scholar 

  • Blair, A. C., Nissen, S. J., Brunk, G. R., and Hufbauer, R. A. 2006. A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J. Chem. Ecol. 32:2327–2331.

    Article  PubMed  CAS  Google Scholar 

  • Blank, R. R. 2008. Biogeochemistry of plant invasion: a case study with downy brome (Bromus tectorum). Invasive Plant Sci. Manag. 1:226–238.

    Article  CAS  Google Scholar 

  • Blank, R. R., and Young, J. A. 2004. Influence of three weed species on soil nutrient dynamics. Soil Sci. 169:385–397.

    Article  CAS  Google Scholar 

  • Borrgaard, O. K., and Gimsing, A. L. 2008. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Manag. Sci. 64:441–456.

    Article  CAS  Google Scholar 

  • Busse, M. D., Ratcliff, A. W., and Shestak, C. J. 2001. Glyphosate toxicity and the effects of long-term vegetation control on soil microbial communities. Soil Biol. Biochem. 33:1777–1789.

    Article  CAS  Google Scholar 

  • Busse, M. D., Fiddler, G. O., and Ratcliff, A. W. 2004. Ectomycorrhizal formation in herbicide-treated soils of differing clay and organic matter content. Water Air Soil Pollut. 152:23–34.

    Article  CAS  Google Scholar 

  • Caldwell, B. A. 2005. Effects of invasive scotch broom on soil properties in a Pacific coastal prairie soil. Appl. Soil Ecol. 32:149–152.

    Article  Google Scholar 

  • Callaway, R. M., and Aschehoug, E. T. 2000. Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523.

    Article  PubMed  CAS  Google Scholar 

  • Callaway, R. M., and Ridenour, W. M. 2004. Novel weapons: invasive success and the evolution of increased competitive ability. Front. Ecol. Environ. 2:436–443.

    Article  Google Scholar 

  • Callaway, R. M., Nadkarni, N. M., and Mahall, B. E. 1991. Facilitation and interference of Quercus douglasii on understory productivity in central California. Ecology 72:1484–1499.

    Article  Google Scholar 

  • Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055.

    Article  PubMed  Google Scholar 

  • Callaway, R. M., Ridenour, W. M., Laboski, T., Weir, T., and Vivanco, J. M. 2005. Natural selection for resistance to the allelopathic effects of invasive plants. J. Ecol. 93:576–583.

  • Cappuccino, N., and Arnason, J. T. 2006. Novel chemistry of invasive exotic plants. Biol. Lett. 2:189–193.

    Article  PubMed  CAS  Google Scholar 

  • Cedergreen, N. 2008. Is the growth stimulation by low doses of glyphosate sustained over time? Environ. Pollut. 156:1099–1104.

    Article  PubMed  CAS  Google Scholar 

  • Crocker, R. L., and Major, J. 1955. Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol. 43: 427–448.

    Article  Google Scholar 

  • Crone, E. E., Marler, M., and Pearson, D. E. 2009. Non-target effects of broadleaf herbicide on a native perennial forb: a demographic framework for assessing and minimizing impacts. J. Appl. Ecol. 46:673–682.

    Article  Google Scholar 

  • Dassonville, N., Vanderhoven, S., Gruber, W., and Meerts, P. 2007. Invasion by Fallopia japonica increases topsoil mineral nutrient concentrations. Ecoscience 14:230–240.

    Article  Google Scholar 

  • Dassonville, N., Vanderhoeven, S., Vanparys, V., Hayez, M., Gruber, W., and Meerts, P. 2008. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe. Oecologia 157:131–140.

    Article  PubMed  Google Scholar 

  • DeLuca, T. H., Nilsson, M.-C., and Zackrisson, O. 2002. Nitrogen mineralization and phenol accumulation along a fire chronosequence in Northern Sweden. Oecologia 133:206–214.

    Article  Google Scholar 

  • DeLuca, T. H., Mackenzie, D., and Gundale, M. J. 2006. Biochar effects on soil nutrient transformationsm, pp. 252–270, in J. Lehmann and S. Joseph (eds.). Biochar for Environmental Management: Science and Technology. Earthscan, London.

    Google Scholar 

  • Duda, J. J., Freeman, D. C., Emlen, J. M., Belnap, J., Kitchen, S. G., Zak, J. C., Sobek, E., Tracy, M., and Montante, J. 2003. Differences in native soil ecology associated with invasion of the exotic annual chenopod, Halogeton glomeratus. Biol. Fertil. Soils 38:72–77.

    Article  CAS  Google Scholar 

  • Duke, S. O., and Powles, S. B. 2008. Glyphosate: a once-in-a-century herbicide. Pest Manag. Sci. 64:319–325.

    Article  PubMed  CAS  Google Scholar 

  • Duke, S. O., Blair, A. C., Dayan, F. E., Johnson, R. D., Meepagala, K. M., Cook, D., and Bajsa, J. 2009. Is (-)-catechin a novel weapon of spotted knapweed (Centaurea stoebe)? J. Chem. Ecol. 35:141–153.

    Article  PubMed  Google Scholar 

  • Eberbach, P. L., and Douglas, L. A. 1989. Herbicide effects on the growth and nodulation potential of Rhizobium trifolii with Trifolium subterraneum L. Plant Soil 119:15–23.

    Article  CAS  Google Scholar 

  • Ehrenfeld, J. G. 2004. Implications of invasive species for belowground community and nutrient processes. Weed Technol. 18:1232–1235.

    Article  Google Scholar 

  • Ehrenfeld, J. G., Kourtev, P., and Huang, W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecol. Appl. 11:1287–1300.

    Article  Google Scholar 

  • Einhellig, F.A. 1996. Interactions involving allelopathy in cropping systems. Agron. J. 88: 886–893.

    CAS  Google Scholar 

  • Eker, S., Ozturk, L., Yazici, A., Erenoglu, B., Römheld, V., and Cakmak, I. 2006. Foliar-applied glyphosate substantially reduced uptake and transport of iron and manganese in sunflower (Helianthus annuus L.) plants. J. Agric. Food Chem. 54:10019–10025.

    Article  PubMed  CAS  Google Scholar 

  • Ens, E. J., Bremner, J. B., French, K., and Korth, J. 2009a. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 11:275–287.

    Article  Google Scholar 

  • Ens, E. J., French, K., and Bremner, J. B. 2009b. Evidence for allelopathy as a mechanism of community composition change by an invasive exotic shrub, Chrysanthemoides monilifera spp. rotundata. Plant Soil 316:125–137.

    Article  CAS  Google Scholar 

  • Evans, R. D., Rimer, R., Sperry, L., and Belnap, J. 2001. Exotic plant invasion alters nitrogen dynamics in an arid grassland. Ecol. Appl. 11:1301–1310.

    Article  Google Scholar 

  • Feng, Y., and Thompson, D. G. 1990. Fate of glyphosate in a Canadian forest watershed. 2: persistence in foliage and soils. J. Agric. Food Chem. 38:1118–1125.

    Article  CAS  Google Scholar 

  • Feng, Y., Lei, Y., Wang, R., Callaway, R. M., Valiente-Banuet, A., Inderjit, Li, Y., and Zheng, Y. 2009. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc. Natl. Acad. Sci. U. S. A. 106:1853–1856.

    Article  PubMed  Google Scholar 

  • Gove, B., Power, S. A., Buckley, G. P., and Ghazoul, J. 2007. Effects of herbicide spray drift and fertilizer overspread on selected species of woodland ground flora: comparison between short-term and long-term impact assessments and field surveys. J. Appl. Ecol. 44:374–384.

    Article  CAS  Google Scholar 

  • Grierson, P. F. 1992. Organic acids in the rhizosphere of Banksia integrifolia L. Plant Soil 144:259–265.

    Article  CAS  Google Scholar 

  • Grierson, P. F., and Adams, M. A. 2000. Plant species affect acid phosphatase, ergosterol and microbial P in a Jarrah (Eucalyptus marginata Donn ex Sm.) forest in south-western Australia. Soil Biol. Biochem. 32:1817–1827.

    Article  CAS  Google Scholar 

  • Grover, R., and Cessna, A. 1991. Environmental Chemistry of Herbicides. CRC Press, Boca Raton.

    Google Scholar 

  • Gundale, M. J., and DeLuca, T. H. 2006. Temperature and substrate influence the chemical properties of charcoal in the ponderosa pine/Douglas-fir ecosystem. For. Ecol. Manag. 231:86–93.

    Article  Google Scholar 

  • Hamilton, E. W. III, and Frank, D. A. 2001. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 82:2397–2402.

    Article  Google Scholar 

  • Haney, R. L., Senseman, S. A., Hons, F. M., and Zuberer, D. A. 2000. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 48:89–93.

    Article  CAS  Google Scholar 

  • He, W.-M., Feng, Y., Ridenour, W. M., Thelen, G. C., Pollock, J. L., Diaconu, A., and Callaway, R. M. 2009. Novel weapons and invasion: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudates (±)-catechin. Oecologia 159:803–815.

    Article  PubMed  Google Scholar 

  • Hernandez, A., Garcia-Plazaola, J. I., and Becerril, J. M. 1999. Glyphosate effects on phenolic metabolism of nodulated soybean (Glycine max L. Merr.). J. Agric. Food Chem. 47:2920–2925.

    Article  PubMed  CAS  Google Scholar 

  • Herr, C., Chapuis-Lardy, L., Dassonville, N., Vanderhoeven, S., and Meerts, P. 2007. Seasonal effect of the exotic invasive plant Solidago gigantea on soil pH and P fractions. J. Plant Nutr. Soil Sci. 170:729–738.

    Article  CAS  Google Scholar 

  • Hierro, J. L., Maron, J. L., and Callaway, R. M. 2005. A biogeographic approach to plant invasions: the importance of studying exotics in their introduced and native range. J. Ecol. 93:5–15.

    Article  Google Scholar 

  • Hoagland, R. E., and Duke, S. O. 1983. Relationships between phenylalanine ammonia-lyase activity and physiological responses of soybean (Glycine max) seedlings to herbicides. Weed Sci. 31:845–852.

    CAS  Google Scholar 

  • Inderjit, P. J. L., Callaway, R. M., and Hoben, W. 2008a. Phytotoxic effects of (±)-catechin In vitro, in soil, and in the field. PLoS ONE 3(7):e2536. doi:10.1371/journal.pone.0002536.

    Article  PubMed  CAS  Google Scholar 

  • Inderjit, Seadstet, T. R., Callaway, R. M., and Kaur, J. 2008b. Allelopathy and plant invasions: traditional, congeneric, and biogeographical approaches. Biol. Invasions 10:875–890.

    Article  Google Scholar 

  • Jamieson, M. A., and Bowers, M. D. 2009. Iridoid glycoside variation in the invasive plant dalmation toadflax, Linaria dalmatica (Plantaginaceae), and sequestration by the biological control agent, Calophasia lunula. J. Chem. Ecol.

  • Joffre, R., and Rambal, S. 1993. How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582.

    Article  Google Scholar 

  • Kelly, E. F., Chadwick, O. A., and Hilinski, T. E. 1998. The effects of plants on mineral weathering. Biogeochemistry 42:21–53.

    Article  Google Scholar 

  • Kollmann, J., Strobel, B. W., and Brunn Hansen, H. C. 2009. Climate change, invasive species and toxic plant substances in soil and water. IOP Conf. Series: Earth and Environmental Science 6:302022. doi:10.1088/1755-1307/6/0/302022.

    Article  Google Scholar 

  • Kueffer, C., Klingler, G., Zirfass, K., Schumacher, E., Edwards, P., and Güsewell, S. 2008. Invasive trees show only weak potential to impact nutrient dynamics in phosphorus-poor tropical forests in the Seychelles. Funct. Ecol. 22:359–366.

    Article  Google Scholar 

  • Lambers, H., Juniper, D., Cawthray, G. R., Veneklaas, E. J., and Martinez-Ferri, E. 2002. The pattern of carboxylate exudation in Banksia grandis (Proteaceae) is affected by the form of phosphate added to the soil. Plant Soil 238:111–122.

    Article  CAS  Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    Article  CAS  Google Scholar 

  • Li, L., Li, S., Sun, J., Zhou, L., Bao, X., Zhang, H., and Zhang, F. 2007. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils. Proc. Natl. Acad. Sci. U. S. A. 104:11192–11196.

    Article  PubMed  CAS  Google Scholar 

  • Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., and Li, B. 2008. Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol. 177:706–714.

    Article  PubMed  CAS  Google Scholar 

  • Lin, C., Owen, S. M., and Peñuelas, J. 2007. Volatile organic compounds in the roots and rhizosphere of Pinus spp. Soil Biol. Biochem. 39:951–960.

    Article  CAS  Google Scholar 

  • Lupwayi, N. Z., Harker, K. N., Clayton, G. W., O’Donovan, J. T., and Blackshaw, R. E. 2009. Soil microbial response to herbicides applied to glyphosate-resistant canola. Agric. Ecosyst. Environ. 129:171–176.

    Article  CAS  Google Scholar 

  • Lydon, J., and Duke, S. O. 1988. Glyphosate induction of elevated levels of hydroxybenzoic acids in higher plants. J. Agric. Food Chem. 36:813–818.

    Article  CAS  Google Scholar 

  • Mallik, A. U., and Pellissier, F. 2000. Effects of Vaccinium myrtillus on spruce regeneration: testing the notion of coevolutionary significance of allelopathy. J. Chem. Ecol. 26:2197–2209.

    Article  CAS  Google Scholar 

  • Måren, I. E., Vandvik, V., and Ekelund, K. 2008. Restoration of bracken-invaded Calluna vulgaris heathlands: Effects on vegetation dynamics and non-target species. Biol. Conserv. 141:1032–1042.

    Article  Google Scholar 

  • Marrs, R. H., Frost, A. J., and Plant, R. A. 1991. Effect of mecoprop drift on some plant species of conservation interest when grown in standardized mixtures in microcosms. Environ. Pollut. 73: 25–42.

    Article  PubMed  CAS  Google Scholar 

  • Martin, M. R., Tipping, P. W., and Sickman, J. O. 2009. Invasion by an exotic tree alters above and belowground ecosystem components. Biol. Invasions 11:1883–1894.

    Article  Google Scholar 

  • McGrath, D. A., and Binkley, M. A. 2009. Microstegium vimineum invasion changes soil chemistry and microarthropod communities in Cumberland Plateau forests. Southeast. Nat. 8:141–156.

    Article  Google Scholar 

  • McKenney, J. L., Cripps, M. G., Price, W. J., Hinz, H. L., and Schwarzländer, M. 2007. No difference in competitive ability between invasive North American and native European Lepidium draba populations. Plant. Ecol. 193:293–303.

    Article  Google Scholar 

  • Meier, C. L., and Bowman, W. D. 2008. Phenolic-rich leaf carbon fractions differentially influence microbial respiration and plant growth. Oecologia 158:95–107.

    Article  PubMed  Google Scholar 

  • Metlen, K. L., Aschehoug, E. T., and Callaway, R. M. 2009. Plant behavioural plasticity in secondary metabolites. Plant Cell Environ. 32:641–653.

    Article  PubMed  CAS  Google Scholar 

  • Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., Ortet, P., Creff, A., Somerville, S., Rolland, N., Doumas, P., Nacry, P., Herrerra-Estrella, L., Nussaume, L., and Thibaud, M. C. 2005. A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proc. Natl. Acad. Sci. U. S. A. 102:11934–11939.

    Article  PubMed  CAS  Google Scholar 

  • Moore, J. K., Braymer, H. D., and Larson, A. D. 1983. Isolation of a Pseudomonas sp. which utilizes the phosphonate herbicide glyphosate. Appl. Environ. Microbiol. 46:316–320.

    PubMed  CAS  Google Scholar 

  • Neumann, G., Kohls, S., Landsberg, E., Souza, K. S.-O., Yamada, T., and Römheld, V. 2006. Relevance of glyphosate transfer to non-target plants via the rhizosphere. J. Plant Dis. Protect. 20:963–969.

    Google Scholar 

  • Ormeño, E., Fernandez, C., and Mévy, J. 2007. Plant coexistence alters terpene emission and content of Mediterranean species. Phytochemistry 68:840–852.

    Article  PubMed  CAS  Google Scholar 

  • Perry, L. G., Thelen, G. C., Ridenour, W. M., Callaway, R. M.,Paschke, M. V., and Vivanco, J. M. 2007. Concentrations of the allelochemical (±)-catechin in Centaurea maculosa soils. J. Chem. Ecol. 33:2337–2344.

    Article  PubMed  CAS  Google Scholar 

  • Peterson, I. L., Hansen, H. C. B., Ravn, H. W., Sørenson, J. C., and Sørenson, H. 2007. Metabolic effects in rapeseed (Brassica napus L.) seedlings after root exposure to glyphosate. Pestic. Biochem. Physiol. 89:220–229.

    Article  CAS  Google Scholar 

  • Pipke, R., and Amrhein, N. 1988. Isolation and characterization of a mutant of Arthrobacter sp. strain GLP-1 which utilizes the herbicide glyphosate as its sole source of phosphorus and nitrogen. Appl. Environ. Microbiol. 54: 2868–2870.

    PubMed  CAS  Google Scholar 

  • Playsted, C. W. S., Johnston, M. E., Ramage, C. M., Edwards, D. G., Cawthray, G. R., and Lambers, H. 2006. Functional significance of dauciform roots: exudation of carboxylates and acid phosphatase under phosphorus deficiency in Caustis blakei (Cyperaceae). New Phytol. 170:491–500.

    Article  PubMed  CAS  Google Scholar 

  • Pollock, J. L., Callaway, R. M., Thelen, G. C., and Holben, W. E. 2009. Catechin-metal interactions as a mechanism for conditional allelopathy by the invasive plant Centaurea maculosa. J. Ecol. doi:10.1111/j.1365-2745.2009.01553.x.

    Google Scholar 

  • Powell, J. R., Levy-Booth, D. J., Gulden, R. H., Asbil, W. L., Campbell, R. G., Dunfield, K. E., Hamill, A. S., Hart, M. M., Lerat, S., Nurse, R. E., Pauls, K. P., Sikkema, P. H., Swanton, C. J., Trevors, J. T., and Klironomos, J. N. 2009. Effects of genetically modified, herbicide-tolerant crops and their management on soil food web properties and crop litter decomposition. J. Appl. Ecol. 46:388–396.

    Article  CAS  Google Scholar 

  • Prober, S. M., and Lunt, I. E. 2009. Restoration of Themeda australis swards suppresses soil nitrate and enhances ecological resistance to invasion by exotic annuals. Biol. Invasions 11:171–181.

    Article  Google Scholar 

  • Ratcliff, A. W., Busse, M. D., and Shestak, C. J. 2006. Changes in microbial community structure following herbicide (glyphosate) additions to forest soils. Appl. Soil Ecol. 34:114–124.

    Article  Google Scholar 

  • Renz, M. J., and Blank, R. R. 2004. Influence of perennial pepperweed (Lepidium latifolium) biology and plant-soil relationships on management and restoration. Weed Technol. 18:1359–1363.

    Article  Google Scholar 

  • Rodgers, V. L., Wolfe, B. E., Werden, L. K., and Finzi, A. C. 2008. The invasive species Alliaria petiolata (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests. Oecologia 157: 459–471.

    Article  PubMed  Google Scholar 

  • Rout, M., and Callaway, R. M. 2009. An invasive plant paradox. Science 324:734–735.

    Article  PubMed  CAS  Google Scholar 

  • Sanon, A., Béguiristain, T., Cébron, A., Berthelin, J., Ndoye, I., Leyval, C., Sylla, S., and Duponnois, R. 2009. Changes in soil diversity and global activities following invasions of the exotic invasive plant, Amaranthus viridis L., decrease the growth of native sahelian Acacia species. FEMS Microbiol. Ecol. 70:118–131.

    Article  PubMed  CAS  Google Scholar 

  • Santos, A., and Flores, M. 1995. Effects of glyphosate on nitrogen fixation of free-living heterotrophic bacteria. Lett. Appl. Microbiol. 20:349–352.

    Article  CAS  Google Scholar 

  • Scharfy, D., Eggenschwiler, H., Olde Venterink, H., Edwards, P. J., and Güsewell, S. 2009. The invasive alien plant species Solidago gigantea alters ecosystem properties across habitats with differing fertility. J. Veg. Sci. doi:10.1111/j.1654-1103.2009.01105.x.

    Google Scholar 

  • Schwab, S. M., Johnson, E. L. V., and Menge, J. A. 1982. Influence of simazine on formation of vesicular-arbuscular mycorrhizae in Chenopodium quinona Wild. Plant Soil 64:283–287.

    Article  CAS  Google Scholar 

  • Sharma, G. P., and Raghubanshi, A. S. 2009. Lantana invasion alters soil nitrogen pools and processes in the tropical dry deciduous forest of India. Appl. Soil Ecol. 42:134–140.

    Article  Google Scholar 

  • Soler, R., Harvey, J. A., Kamp, A. F. D., Vet, L. E. M., Van der Putten, W. H., Van Dam, N. M., Stuefer, J. F., Gols, R., Hordijk, C. A., and Bezemer, T. M. 2007. Root herbivores influence the behaviour of an aboveground parasitoid through changes in plant-volatile signals. Oikos 116:367–376.

    Article  CAS  Google Scholar 

  • Spencer, D. F., Tan, W., Liow, P.-S., Ksander, G. G., Whitehand, L. C., Weaver, S., Olson, J., and Newhouser, M. 2008. Evaluation of glyphosate for managing giant reed (Arundo donax). Invasive Plant Sci. Manag. 1:248–254.

    Article  CAS  Google Scholar 

  • Standish, R. J., Williams, P. A., Robertson, A. W. Scott, N. A., and Hedderley, D. I. 2004. Invasion by a perennial herb increases decomposition rate and alters nutrient availability in warm temperate lowland forest remnants. Biol. Invasions 6:71–81.

    Article  Google Scholar 

  • Stermitz, F. R., Hufbauer, R. A., and Vivanco, J. M. 2009. Retraction. Enantiomeric-dependent phytotoxic and antimicrobial activity of (±)-catechin. A rhizosecreted racemic mixture from spotted knapweed. Plant Physiol. 151:967.

    Article  CAS  Google Scholar 

  • Stevenson, F. J., and Cole, M. A. 1999. Cycles of the Soil: Carbon, Nitrogen, Phosphorus, Sulfur, Micronutrients, 2nd ed. Wiley, New York.

    Google Scholar 

  • Tejada, M. 2009. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate+diflufenican herbicides. Chemosphere 76:365–373.

    Article  PubMed  CAS  Google Scholar 

  • Tharayil, N., Alpert, P., and Bhowmik, P. 2008. Dual-purpose secondary compounds: allelochemicals of Centaurea also increase nutrient uptake. Ecological Society of America Annual Meeting, Abstract.

  • Tharayil, N., Bhowmik, P., Alpert, P.,Walker, E., Amarasiriwardena, D., and Xing, B., 2009. Dual purpose secondary compounds: phytotoxin of Centaurea diffusa also facilitates nutrient uptake. New Phytol. 181:424–434.

    Article  PubMed  CAS  Google Scholar 

  • Thorpe, A. S., Archer, V., and DeLuca, T. H. 2006. The invasive forb Centaurea maculosa increases phosphorus availability in Montana grasslands. Appl. Soil Ecol. 32:118–122.

    Article  Google Scholar 

  • Thorpe, A. S., Thelen, G. C., Diaconu, A., and Callaway, R. M. 2009. Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J. Ecol. 97:641–645.

    Article  Google Scholar 

  • Tiedemann, A. R., and Klemmedson, J. O. 1986. Long-term effects of mesquite removal on soil characteristics: I. nutrients and bulk density. Soil Sci. Soc. Am. J. 50:472–475.

    CAS  Google Scholar 

  • Triebwasser, D., Tharayil, N., Callaway, R. M., and Bhowmik, P. C. 2009. Diurnal rhythm of catechin exudation by invasive Centaurea maculosa. Annual Weed Science Society of America Meeting, Orlando, February 9–13.

  • Ugolini, F. C., and Sletten, R. S. 1991. The role of proton donors in pedogenesis as revealed by soil solution studies. Soil Sci. 151:59–75.

    Article  CAS  Google Scholar 

  • United States Environmental Protection Agency. 2009. 2000–2001 Pesticide market estimates. http://www.epa.gov/oppbead1/pestsales/01pestsales/usage2001.htm, accessed 28 November 2009.

  • Vanderhoeven, S., Dassonville, N., and Meerts, P. 2005. Increased topsoil mineral nutrient concentrations under exotic invasive plants in Belgium. Plant Soil 275:169–179.

    Article  CAS  Google Scholar 

  • Velini, E. D., Alves, E., Godoy, M. C., Meschede, D. K., Souza, R. T., and Duke, S. O. 2008. Glyphosate applied at low doses can stimulate plant growth. Pest Manag. Sci. 64:489–496.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B. L., Shen, J. B., Zhang, W. H., Zhang, F. S., and Neumann, G. 2007. Citrate exudation from white lupin induced by phosphorus deficiency differs from that induced by aluminum. New Phytol. 176:581–589.

    Article  PubMed  CAS  Google Scholar 

  • Wang, X., Tang, C., Guppy, C. N., and Sale, P. W. G. 2008. Phosphorus acquisition characteristics of cotton (Gossypium hisutumL.), wheat (Triticum aestivum L.) and white lupin (Lupinus albus L.) under P deficient conditions. Plant Soil 312:117–128.

    Article  CAS  Google Scholar 

  • Wardle, D. A., and Parkinson, D. 1991. Relative importance of the effect of 2,4-D, glyphosate, and environmental variables on the soil microbial biomass. Plant Soil 134:209–219.

    Article  CAS  Google Scholar 

  • Weaver, M. A., Krutz, L. J., Zablotowicz, R. M., and Reddy, K. N. 2007. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil. Pest Manag. Sci. 63:388–393.

    Article  PubMed  CAS  Google Scholar 

  • Widenfalk, A., Bertilsson, S., Sundh, I., and Goedkoop, W. 2008. Effects of pesticides on community composition and activity of sediment microbes—responses at various levels of microbial community organization. Environ. Pollut. 152:576–584.

    Article  PubMed  CAS  Google Scholar 

  • Zabaloy, M. C., Garland, J. L., and Gómez, M. A. 2008. An integrated approach to evaluate the impacts of the herbicides glyphosate, 2,4-D and metsulfuron-methyl on soil microbial communities in the Pampas region, Argentina. Appl. Soil Ecol. 40:1–12.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey D. Weidenhamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weidenhamer, J.D., Callaway, R.M. Direct and Indirect Effects of Invasive Plants on Soil Chemistry and Ecosystem Function. J Chem Ecol 36, 59–69 (2010). https://doi.org/10.1007/s10886-009-9735-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9735-0

Keywords

Navigation