Skip to main content
Log in

Density-Dependent Phytotoxicity of Impatiens pallida Plants Exposed to Extracts of Alliaria petiolata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Invasive plants are by definition excellent competitors, either indirectly through competition for resources or directly through allelopathic inhibition of neighboring plants. Although both forms of competition are commonly studied, attempts to explore the interactions between direct and indirect competition are rare. We monitored the effects of several doses of extracts of Alliaria petiolata, a Eurasian invader in North America, on the growth of Impatiens pallida, a North American native, at several planting densities. The density-dependent phytotoxicity model predicts that as plant density increases, individual plant size will decrease, unless a toxin is present in the soil. In this case, individual plant size is predicted to increase as plant density increases, as plants share a limited toxin dose. We tested this model using fractions of an A. petiolata extract enriched in flavonoids or glucosinolates, as well as a combined fraction. The flavonoid-enriched fraction and the combined fraction suppressed I. pallida growth but only when applied at a dose eight times higher than that expected in the field. When treated with a dose equivalent to estimated field exposure levels, I. pallida growth was not distinguishable from that of control plants that received no extract, showing that indirect competition for resources was more important for determining the growth of I. pallida than direct allelopathic inhibition by A. petiolata. This is an important reminder that, even though many plants have the demonstrated potential to exert strong allelopathic effects, those effects may not always be apparent when other forms of competition are considered as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen, R. N. 1981. Increasing herbicide tolerance of soybeans (Glycine max) by increasing seeding rates. Weed Sci. 29:336–338.

    CAS  Google Scholar 

  • Barto, E. K. and Cipollini, D. 2009. Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere. doi:10.1016/j.chemosphere.2009.02.020

  • Bauer, J., Anderson, R., and Anderson, M. R. 2005. Competition between first- and second-year garlic mustard plants (Alliaria petiolata Brassicaceae) and native vegetation. Trans. Ill. State Acad. Sci. 46.

  • Blanco, J. A. 2007. The representation of allelopathy in ecosystem-level forest models. Ecol. Model. 209:65–77.

    Article  Google Scholar 

  • Blossey, B., Nuzzo, V., Hinz, H., and Gerber, E. 2001. Developing biological control of Alliaria petiolata (M. Bieb.) Cavara and Grande (garlic mustard). Nat. Areas J. 21:357–367.

    Google Scholar 

  • Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055.

    Article  PubMed  Google Scholar 

  • Cavers, P. B., Heagy, M. I., and Kokron, R. F. 1979. The biology of Canadian weeds. 35. Alliaria petiolata (M. Bieb.) Cavara and Grande. Can J Plant Sci 59:217–229.

    Article  Google Scholar 

  • Cipollini, D. F. 2002. Variation in the expression of chemical defenses in Alliaria petiolata (Brassicaceae) in the field and common garden. Am. J. Bot. 89:1422–1430.

    Article  CAS  Google Scholar 

  • Cipollini, D. F. and Gruner, B. 2007. Cyanide in the chemical arsenal of garlic mustard, Alliaria petiolata. J. Chem. Ecol. 33:85–94.

    Article  PubMed  CAS  Google Scholar 

  • Cipollini, D. F., Mbagwu, J., Barto, K., Hillstrom, C., and Enright, S. 2005. Expression of constitutive and inducible chemical defenses in native and invasive populations of Alliaria petiolata. J. Chem. Ecol. 31:1255–1267.

    Article  PubMed  CAS  Google Scholar 

  • Cipollini, D. F., Stevenson, R., and Cipollini, K. 2008a. Contrasting effects of allelochemicals from two invasive plants on the performance of a nonmycorrhizal plant. Int. J. Plant Sci. 169:371–375.

    Article  Google Scholar 

  • Cipollini, K. A., Mcclain, G. Y., and Cipollini, D. F. 2008b. Separating above- and belowground effects of Alliaria petiolata and Lonicera maackii on the performance of Impatiens capensis. Am. Midl. Nat. 160:117–128.

    Article  Google Scholar 

  • Connell, J. H. 1990. Apparent versus “real” competition in plants, pp. 9–26, in J. B. Grace, D. Tilman (eds). Perspectives on Plant Competition. Academic, San Diego.

    Google Scholar 

  • Gimsing, A. L., Sørensen, J. C., Tovgaard, L., Jørgensen, A. M. F., and Hansen, H. C. B. 2006. Degradation kinetics of glucosinolates in soil. Environ. Toxicol. Chem. 25:2038–2044.

    Article  PubMed  CAS  Google Scholar 

  • Gimsing, A. L., Poulsen, J. L., Pedersen, H. L., and Hansen, H. C. B. 2007. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environ. Sci. Technol. 41:4271–4276.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, D. E. 1990. Components of resource competition in plant communities, pp. 27–49, in J. B. Grace, D. Tilman (eds). Perspectives on Plant Competition. Academic, San Diego.

    Google Scholar 

  • Haribal, M. and Renwick, J. A. A. 1998. Isovitexin 6″-O-β-D-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240.

    Article  CAS  Google Scholar 

  • Haribal, M. and Renwick, J. A. A. 2001. Seasonal and population variation in flavonoid and alliarinoside content of Alliaria petiolata. J. Chem. Ecol. 27:1585–1594.

    Article  PubMed  CAS  Google Scholar 

  • Haribal, M., Yang, Z., Attygalle, A. B., Renwick, J. A. A., and Meinwald, J. 2001. A cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent for larvae of Pieris napi oleracea. J. Nat. Prod. 64:440–443.

    Article  PubMed  CAS  Google Scholar 

  • Hoffman, D. W. and Lavy, T. L. 1978. Plant competition for atrazine. Weed Sci. 26:94–99.

    CAS  Google Scholar 

  • Inderjit, and Callaway, R. M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256:1–11.

    Article  CAS  Google Scholar 

  • Lau, J. A., Puliafico, K. P., Kopshever, J. A., Steltzer, H., Jarvis, E. P., Schwarzländer, M., Strauss, S. Y., and Hufbauer, R. A. 2008. Inference of allelopathy is complicated by effects of activated carbon on plant growth. New Phytol. 178:412–423.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. M., Adler, P. B., and Yelenik, S. G. 2004. A meta-analysis of biotic resistance to exotic plant invasions. Ecol. Lett. 7:975–989.

    Article  Google Scholar 

  • Mccarthy, B. 1997. Response of a forest understory community to experimental removal of an invasive nonindigenous plant (Alliaria petiolata, Brassicaceae), pp. 117–130, in J. O. LukenL. W. Thieret (eds). Assessment and Management of Plant Invasions. Springer, New York.

    Google Scholar 

  • Mccarthy, B. C. and Hanson, S. L. 1998. An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73.

    Google Scholar 

  • Meekins, J. F. and Mccarthy, B. C. 1999. Competitive ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive, nonindigenous forest herb. Int. J. Plant Sci. 160:743–752.

    Article  Google Scholar 

  • Nuzzo, V. 2002. Element Stewardship Abstract for Alliaria petiolata (Alliaria officinalis) Garlic Mustard. Nature Conservancy Arlington, Virginia.

    Google Scholar 

  • Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91:285–288.

    Article  Google Scholar 

  • Renwick, J. A. A., Zhang, W., Haribal, M., Attygalle, A. B., and Lopez, K. D. 2001. Dual chemical barriers protect a plant against different larval stages of an insect. J. Chem. Ecol. 27:1575–1583.

    Article  PubMed  CAS  Google Scholar 

  • Rice, E. L. 1974. Allelopathy. Academic, New York.

    Google Scholar 

  • Roberts, K. J. and Anderson, R. C. 2001. Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat. 146:146–152.

    Article  Google Scholar 

  • Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:0727–0731.

    Article  CAS  Google Scholar 

  • Theoharides, K. A. and Dukes, J. S. 2007. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176:256–273.

    Article  PubMed  Google Scholar 

  • Tsao, R., Yu, Q., Friesen, I., Potter, J., and Chiba, M. 2000. Factors affecting the dissolution and degradation of Oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food Chem. 48:1898–1902.

    Article  PubMed  CAS  Google Scholar 

  • Tseng, M.-H., Kuo, Y.-H., Chen, Y.-M., and Chou, C.-H. 2003. Allelopathic potential of Macaranga tanarius (L.) Muell.-Arg. J. Chem. Ecol. 29:1269–1286.

    Article  PubMed  CAS  Google Scholar 

  • Vaughn, S. F. and Berhow, M. A. 1999. Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J. Chem. Ecol. 25:2495–2504.

    Article  CAS  Google Scholar 

  • Weidenhamer, J. D. 1996. Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron. J. 88:866–875.

    Google Scholar 

  • Weidenhamer, J. D., Hartnett, D. C., and Romeo, J. T. 1989. Density-dependent phytotoxicity: distinguishing resource competition and allelopathic interference in plants. J. Appl. Ecol. 26:613–624.

    Article  CAS  Google Scholar 

  • Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 96:777–783.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Steph Enright for help in collecting A. petiolata in very unpleasant field conditions and for help in setting up and harvesting the experiment. Comments by two anonymous reviewers substantially improved this manuscript. Funding was provided by an Environmental Protection Agency Greater Research Opportunities Fellowship to K Barto (#91673701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kathryn Barto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barto, E.K., Cipollini, D. Density-Dependent Phytotoxicity of Impatiens pallida Plants Exposed to Extracts of Alliaria petiolata . J Chem Ecol 35, 495–504 (2009). https://doi.org/10.1007/s10886-009-9629-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9629-1

Keywords

Navigation