Skip to main content
Log in

On Uniform Decay of the Entropy for Reaction–Diffusion Systems

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This work provides entropy decay estimates for classes of nonlinear reaction–diffusion systems modeling reversible chemical reactions under the detailed-balance condition. We obtain explicit bounds for the exponential decay of the relative logarithmic entropy, being based essentially on the application of the Log-Sobolev estimate and a convexification argument only, making it quite robust to model variations. An important feature of our analysis is the interaction of the two different dissipative mechanisms: pure diffusion, forcing the system asymptotically to the homogeneous state, and pure reaction, forcing the solution to the (possibly inhomogeneous) chemical equilibrium. Only the interaction of both mechanisms provides the convergence to the homogeneous equilibrium. Moreover, we introduce two generalizations of the main result: (i) vanishing diffusion constants in some chemical components and (ii) usage of different entropy functionals. We provide a few examples to highlight the usability of our approach and shortly discuss possible further applications and open questions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albinus, G., Gajewski, H., Hünlich, R.: Thermodynamic design of energy models of semiconductor devices. Nonlinearity 15(2), 367–383 (2002)

  2. Arnold, A., Markowich, P.A., Toscani, G.: On large time asymptotics for drift–diffusion–poisson systems. Transp. Theory Stat. Phys. 29, 571–581 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Part. Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carrillo, J.A., Jüngel, A., Markowich, P.A., Toscani, G., Unterreiter, A.: Entropy disipation methods for degenerate parabolic problems and generalized sobolev inequalities. Monatshefte Math. 133, 1–82 (2001)

    Article  MATH  Google Scholar 

  5. Carrillo, J.A., Lederman, C., Markowich, P.A., Toscani, G.: Poincaré inequalities for linearizations of very fast diffusion equations. Nonlinearity 15(3), 565–580 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Conway, E., Hoff, D., Smoller, J.: Large time behavior of solutions of nonlinear reaction–diffusion systems. SIAM J. Appl. Math. 35, 1–16 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Groot, S., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984)

    MATH  Google Scholar 

  8. Desvillettes, L., Fellner, K.: Exponential decay toward equilibrium via entropy methods for reaction–diffusion equations. J. Math. Anal. Appl. 319(1), 157–176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion systems. In Discrete and Continuous Dynamical System (suppl). Dynamical Systems and Differential Equations. Proceedings of the 6th AIMS International Conference, pp. 304–312 (2007)

  10. Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations with degenerate diffusion arising in reversibly chemistry. Preprint (2008)

  11. Desvillettes, L., Fellner, K.: Entropy methods for reaction–diffusion equations: slowly growing a-priori bounds. Rev. Mat. Iberoam. 24(2), 407–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Desvillettes, L., Fellner, K.: Duality- and entropy methods for reversible reaction–diffusion equations with degenerate diffusion. Preprint, 16 pp. (2014)

  13. Desvillettes, L., Fellner, K.: Exponential convergence to equilibrium for a nonlinear reaction–diffusion systems arising in reversible chemistry. Proceedings of IFIP 2013, 8 pp. To appear (2014)

  14. Di Francesco, M., Wunsch, M.: Large time behavior in wasserstein spaces and relative entropy for bipolar drift–diffusion–poisson models. Monatshefte Math. 154, 39–50 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Di Francesco, M., Fellner, K., Markowich, P.A.: The entropy dissipation method for spatially inhomogeneous reaction–diffusion-type systems. Proc. R. Soc. Lond. Ser. A 464(2100), 3273–3300 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erbar, M., Maas, J.: Ricci curvature of finite Markov chains via convexity of the entropy. Arch. Ration. Mech. Anal. 206(3), 997–1038 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fisher, R.A.: Advance of advantageous genes. Ann. Eugen. 7, 335–369 (1937)

    MATH  Google Scholar 

  18. Fitzgibbon, W.B., Hollis, S.L., Morgan, J.J.: Stability and lyapunov functions for reaction–diffusion systems. SIAM J. Math. Anal. 28, 595–610 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Glitzky, A.: Electro-reaction–diffusion systems with nonlocal constraints. Math. Nachr. 277, 14–46 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glitzky, A.: Exponential decay of the free energy for discretized electro-reaction–diffusion systems. Nonlinearity 21(9), 1989–2009 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Glitzky, A.: Uniform exponential decay of the free energy for Voronoi finite volume discretized reaction–diffusion systems. Math. Nachr. 284, 2159–2174 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Glitzky, A., Hünlich, R.: Global estimates and asymptotics for electro-reaction–diffusion systems in heterostructures. Appl. Anal. 66(3–4), 205–226 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Glitzky, A., Mielke, A.: A gradient structure for systems coupling reaction–diffusion effects in bulk and interfaces. Z. Angew. Math. Phys. 64, 29–52 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glitzky, A., Gröger, K., Hünlich, R.: Free energy and dissipation rate for reaction diffusion processes of electrically charged species. Appl. Anal. 60(3–4), 201–217 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gröger, K.: Asymptotic behavior of solutions to a class of diffusion–reaction equations. Math. Nachr. 112, 19–33 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gröger, K.: Free energy estimates and asymptotic behaviour of reaction–diffusion processes. WIAS preprint 20 (1992)

  27. Hittmeir, S., Haskovec, J., Markowich, P. A., Mielke, A.: Decay to equilibrium for energy–reaction–diffusion systems. In preparation (2014)

  28. Jüngel, A., Matthes, D.: An algorithmic construction of entropies in higher-order nonlinear pdes. Nonlinearity 19(3), 633–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kolmogorov, A.N., Petrovsky, I.G., Piskunov, N.S.: Etude de l’équation de la diffusion avec croissance de la quantité de matiére et son application á un probléme biologique. Bull. Univ. Moscou A1, 1–26 (1937)

    Google Scholar 

  30. Liero, M., Mielke, A.: Gradient structures and geodesic convexity for reaction–diffusion systems. Philos. Trans. Royal Soc. A, 371(2005), 20120346, 28 (2013)

  31. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261, 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Markowich, P.A.: The Stationary Semiconductor Device Equations. Springer, New York (1986)

    Book  Google Scholar 

  33. Markowich, P.A., Lederman, C.: On fast-diffusion equations with infinite equilibrium entropy and finite equilibrium mass. Commun. Partial Differ. Equ. 28, 301–332 (2001)

    MathSciNet  MATH  Google Scholar 

  34. Markowich, P.A., Ringhofer, C.: Stability of the linearized transient semiconductor device equations. Z. Angew. Math. Mech. 67, 319–322 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Mat. Contemp. (SBM) 19, 1–31 (2000)

    MathSciNet  MATH  Google Scholar 

  36. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Asymptotic analysis of one-dimensional semiconductor device models. IMA J. Appl. Math. 37, 1–24 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Markowich, P.A., Ringhofer, C., Schmeiser, C.: Semiconductor Equations. Springer, New York (1990)

    Book  MATH  Google Scholar 

  38. Mielke, A.: A gradient structure for reaction–diffusion systems and for energy–drift–diffusion systems. Nonlinearity 24, 1329–1346 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Mielke, A.: Geodesic convexity of the relative entropy in reversible Markov chains. Calc. Var. Partial Differ. Equ. 48(1), 1–31 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mielke, A.: Thermomechanical modeling of energy-reaction–diffusion systems, including bulk-interface interactions. Discret. Contin. Dyn. Syst. S 6, 479–499 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Murray, J.D.: Mathematical Biology, II. Volume 18 of Interdisciplinary Applied Mathematics. Springer, New York (2003)

  42. Pierre, M.: Global existence in reaction–diffusion systems with control of mass: a survey. Milan J. Math. 78(2), 417–455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Rothe, F.: Global Solutions of Reaction–Diffusion Systems. Lecture Notes in Mathematics, vol. 1072. Springer, Berlin (1984)

  44. Smoller, J.: Shock Waves and Reaction–Diffusion Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], vol. 258. Springer, New York (1983)

  45. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B 237, 5–72 (1952)

    Article  Google Scholar 

  46. Unterreiter, A., Arnold, A., Markowich, P., Toscani, G.: On generalized csiszár-kullback inequalities. Mon. Math. 131, 235–253 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wegscheider, R.: Über simultane Gleichgewichte und die Beziehungen zwischen Thermodynamik und Reaktionskinetik homogener Systeme. Z. Phys. Chem. 39, 257–303 (1902)

    MATH  Google Scholar 

  48. Wu, H., Markowich, P.A., Zheng, S.: Global existence and asymptotic behavior for a semiconductor drift–diffusion–poisson model. Math. Models Method Appl. Sci. 18(3), 443–487 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors are grateful for helpful comments and stimulating discussions with Klemens Fellner, Annegret Glitzky and Konrad Gröger. The research was partially supported by DFG under SFB 910 Subproject A5 and by the European Research Council under ERC-2010-AdG 267802. Partially supported by DFG under SFB 910 Subproject A5 and by the European Research Council under ERC-2010-AdG 267802.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Mielke.

Additional information

Dedicated to the memory of Klaus Kirchgässner.

Appendices

Appendices

1.1 Proof of Lemma 4.3

Proof

To derive the lower bound (4.6) we use \(F_1(z)\ge \frac{1}{2} F_{1/2}(z)= (\sqrt{z}{-}1)^2\) and \({\mathbb {G}}(u,v)\ge 4 (v{-}\sqrt{u})^2\) to obtain \(F_1(u)+\kappa {\mathbb {G}}(u,v) \ge (\sqrt{u}{-}1)^2+4 \kappa (v{-}\sqrt{u})^2 \ge \tfrac{4 \kappa }{1+4 \kappa }(v{-}1)^2\), where we minimized explicitly with respect to \(\sqrt{u}\). The estimate follows via \((z {-} 1)^2=2 F_2(z)\ge F_1(z)\).

For the analysis of the convexity the basic observation is that \(\phi _\kappa \) has the scaling property

$$\begin{aligned} \phi _\kappa ( s^2 u, s v) = s^2 \phi _\kappa (u,v) + 2 s^2 u \log s + 1 - s^2, \end{aligned}$$

which follows from \({\mathbb {G}}(s^2 u, s v)=s^2 {\mathbb {G}}(u,v)\) and (3.3). Since this scaling is affine in \((u,v,\phi )\) (for each \(s\)), this property is inherited by the convexification \(\phi ^{**}_\kappa \). Introducing \(h_\kappa (z)=\phi _\kappa (z,1)\) and \(g_\kappa (z)=\phi ^{**}_\kappa (z,1)\), we have the representations

$$\begin{aligned} \phi _\kappa (u,v)&= v^2 h_\kappa (u/v^2) + 2u\log v + 1 - v^2, \end{aligned}$$
(6.1)
$$\begin{aligned} \phi _\kappa ^{**}(u,v)&= v^2 g_\kappa (u/v^2) + 2u\log v + 1 - v^2, \end{aligned}$$
(6.2)

A direct calculation of \({\mathrm {D}}^2\phi _\kappa ^{**}\) shows that \(\phi _\kappa ^{**}\) defined as in (6.2) is convex if and only if

$$\begin{aligned} g''_\kappa (z)\ge 0 \text { and } g''_\kappa (z)\big ( g_\kappa (z) - zg'_\kappa (z) +3 z -1) \ge 2. \end{aligned}$$
(6.3)

Inserting \(h_\kappa : z\mapsto F_1(z) + \kappa (z{-}1)\log z\) into this criterion one obtains convexity of \(\phi _\kappa \) for \(\kappa \in [0,\kappa _*]\) with \(\kappa _*\approx 0.8564998142\), where at \(z\approx 12.683\) the second criterion in (6.3) holds with equality. In fact, for \(h_\kappa \) the second criterion in (6.3) can be rewritten, after dividing by \(\kappa >0\), in the form \(z^2+3z - z \log z \ge \kappa \big ( z^2 -1 +(1{+}z) \log z\big )\) for all \(z>0\). Using \( \log z \le \log 3 +z/3-1\) it is easy to see that the estimate holds for \(\kappa =1/2\), and we conclude \(\kappa _*\ge 1/2\). Moreover, since the right-hand side is positive for all \(z>0\) while the left-hand side is negative for \(z<1\), we have the explicit characterization

$$\begin{aligned} \kappa _* {:}=\inf \{\, \tfrac{z^2+3z - z \log z}{ z^2 -1 +(1{+}z) \log z} \, | \, z>1 \,\} . \end{aligned}$$

For \(\kappa \ge 1\) we obtain an upper bound on \(g_\kappa \) by estimating \(g_\kappa (z)=\phi ^{**}_\kappa (z,1)\) with \((1{-}\theta ) \phi _\kappa (0,0) + \theta \phi _\kappa ( z/\theta ,1/\theta )\). Using \(\phi _\kappa (0,0)=1\), (6.1), and defining \(r=1/\theta >1\), yields

$$\begin{aligned}&g_\kappa (z) \le r h_\kappa (z/r)+ 2 z \log r +1-r = h_\kappa (z) + \beta _\kappa (r,z).\\&\text { with } \beta _\kappa (r,z)=(rk{-}kz{+}z)\log r - k(r {-} 1) \log z. \end{aligned}$$

Analyzing \(\beta _\kappa (\cdot ,z)\) on the interval \({[1,\infty [}\), we find the following: Define \(Z_\kappa \) as in the statement of the lemma (where we use \(\kappa \ge 1\)); then \(Z_1=\mathrm {e}\) and \(\kappa \mapsto Z_\kappa \) decreases monotonously with \(Z_\infty =1\). For \(z\le Z_\kappa \) we have \(\beta _\kappa (r,z)\ge \beta _\kappa (1,z)=0\). For \(z> Z_\kappa \) the unique minimizer \(r\) of \(\beta _\kappa (\cdot ,z)\) is given as \(r=z/Z_\kappa \). Thus, for \(z> Z_\kappa \) we have \(g_\kappa ( z) \le h_\kappa (z) + \beta _\kappa ( z/Z_\kappa , z) = 2 z \log z -B_\kappa +1\), with \(B_\kappa \) as given in the statement of the lemma. Note that \(B_1=1+1/\mathrm {e}\) and that \(\kappa \mapsto B_\kappa \) decays monotonously with \(B_\infty =1\).

It remains to be shown that \(\phi _\kappa ^{**}\) in (6.2) with \(g_\kappa \) defined in (4.8) is convex. For this we check (6.3). For \(z\ge Z_\kappa \) this is immediate, since the second estimate holds with equality. For \(z\le Z_\kappa \) we consider \(h_\kappa \) and obtain

$$\begin{aligned} a_\kappa (z){:}=h''_\kappa \big ( h_\kappa -z h''_\kappa +3z-1)-2=\frac{\kappa }{z^2} \Big ( \kappa - \kappa z^2 + 3z + z^2 - \big (\kappa + z +\kappa z \big )\log z\Big ). \end{aligned}$$

For \(z\le 1\) we immediately have \(a_\kappa (z)>0\). For \(z>1\) we can rearrange to

$$\begin{aligned}&a_\kappa (z)= \frac{\kappa }{z^2}\,(1{+}z) (z{+}\log z {-}1)\big ( f_1(z)f_2(z) -\kappa \big ), \ \ f_1(z)=\tfrac{z}{z{+}\log z {-}1}, \ \ f_2(z)=\tfrac{3{+}z{-}\log z}{ 1{+}z}. \end{aligned}$$

We have \(f_2(z)\ge \frac{2{+}\mathrm {e}}{1{+}\mathrm {e}} > 1.268\) for \(z\in [1,\mathrm {e}]\). Moreover \(f'_1(z)<0\) for \(z>1\) which gives, for all \(z\in [1,Z_\kappa ]\) the estimate \(f_1(z) \ge f_1(Z_k)= \kappa \). Using \(Z_\kappa \le \mathrm {e}\) we obtain \(f_1(z)f_2(z)-\kappa \ge 0.268 \kappa >0\) and conclude \(a_\kappa (z)>0\). Thus, the convexity of \(\phi _\kappa ^{**} \) given in (4.8) is established, and Lemma 4.3 is proved. \(\square \)

1.2 Proof of Lemma 4.6

Proof

We have to show that for each \({\varvec{a}}=(a,b)\) there exists \(\Theta ({\varvec{a}})\) such that \(\varPhi ^{**}_\theta ({\varvec{a}})=\varPhi _\theta ({\varvec{a}})\) for \(\theta \in [0,\Theta ({\varvec{a}})]\). The argument relies on the fact that for \(\theta < 1-k/(r\kappa _*)\) the function \({\varvec{c}}\mapsto (1{-}\theta ) r F_1(u)+ k {\mathbb {G}}({\varvec{c}})\) is strictly convex and coercive. Hence subtracting \(\theta F_2(v)\) with sufficiently small \(\theta \) produces a function that still coincides with its lower convex hull in a large region. To be more precise, we have to show that \(\varPhi _\theta \) lies above its Taylor polynomial \({\mathrm {T}}^1_{\varvec{a}}\varPhi _\theta \) of first order expanded in \({\varvec{a}}\): \(\big ({\mathrm {T}}^1_{\varvec{a}}\varPhi _\theta \big )({\varvec{c}}){:}= \varPhi _\theta ({\varvec{a}})+ {\mathrm {D}}\varPhi _\theta ({\varvec{a}}) \cdot ({\varvec{c}}{-}{\varvec{a}})\). For this we use special relations for the entropy functions \(F_0\) and \(F_1\), namely

$$\begin{aligned} F_1(z) = \big ({\mathrm {T}}^1_w F_1\big )(z) + w F_1(z/w) \quad \text {and} \quad F_0(z)=\big ({\mathrm {T}}^1_w \big )F_0(z) + F_0(z/w). \end{aligned}$$

For \({\mathbb {G}}(u,v)=\varGamma (u,v^2)=v^2 \varGamma (u/v^2,1)\) we use \(\varGamma (z,1)=F_0(z)+F_1(z)\) and obtain

$$\begin{aligned} {\mathbb {G}}(u,v)\!=\! v^2 \Big ( F_1\big (\tfrac{a}{b^2}\big ) {+}F_0\big (\tfrac{a}{b^2}\big )\Big ) \!+\! \Big ( F'_1\big (\tfrac{a}{b^2}\big ){+}F'_0\big (\tfrac{a}{b^2}\big ) \Big ) \big ( u - \tfrac{av^2}{b^2}\big ) \!+\! v^2\Big ( \tfrac{a}{b^2}F_1\big (\tfrac{ub^2}{v^2a}\big ) {+}F_0\big (\tfrac{ub^2}{v^2a}\big ) \Big ). \end{aligned}$$

Note that \(F_0\), \(F_1\), and \({\mathbb {G}}(\cdot ,v)\) are convex functions, hence the last term in the expansion, which represents the remainder with respect to the first-order Taylor polynomial, is nonnegative and vanishes at \({\varvec{c}}={\varvec{a}}\). Thus, we decompose of the remainder \({\mathcal {R}}\) for \(\varPhi _\theta \):

$$\begin{aligned}&{\mathcal {R}}_{\varvec{a}}({\varvec{c}}){:}=\tfrac{1}{k}\Big (\varPhi _\theta ({\varvec{c}})- \big ({\mathrm {T}}^1_{\varvec{a}}\varPhi _\theta \big )({\varvec{c}})\Big )= M({\varvec{a}},v)+ N_{(1-\theta )\rho }({\varvec{a}},u,v) - \theta \rho b F_1(\tfrac{v}{b}) \quad \text {with}\\&M({\varvec{a}},v){:}= \big (\tfrac{v^2}{b^2}-1\big ) \big ( {\mathbb {G}}({\varvec{a}}){-} a {\mathrm {D}}_a {\mathbb {G}}({\varvec{a}})\big ) - {\mathrm {D}}_b {\mathbb {G}}({\varvec{a}})(v{-} b) =\big ( {\mathbb {G}}({\varvec{a}}) {-} a {\mathrm {D}}_a {\mathbb {G}}({\varvec{a}})\big )\big (\tfrac{v}{b}{-}1 \big )^2 \\&N_{\widetilde{\rho }}({\varvec{a}},u,v){:}= \widetilde{\rho }a F_1(\tfrac{u}{a}) + v^2\Big ( \tfrac{a}{b^2}F_1\big (\tfrac{ub^2}{v^2a}\big ) {+}F_0\big (\tfrac{ub^2}{v^2a}\big ) \Big ) \ge 0. \end{aligned}$$

To show positivity for all \({\varvec{c}}\) we first minimize \( N_\theta ({\varvec{a}},u,v)\) with respect to the convex variable \(u\). The assumption \( \rho =1/\kappa > 1/\kappa _*\) and the convexity of \(\phi _\kappa \) (cf. Lemma 4.3) yield \(M({\varvec{a}},v)+N_\theta ({\varvec{a}},{\varvec{c}}) \ge 0\). Setting \( \widehat{n}(\widetilde{\rho },{\varvec{a}},v)= \min \{\, N_{\widetilde{\rho }} ({\varvec{a}},u,v) \, | \, u>0 \,\} \ge 0 \) we obtain \(M({\varvec{a}},v)+N_{\widetilde{\rho }}({\varvec{a}},{\varvec{c}})\ge M({\varvec{a}},v)+\widehat{n}(\widetilde{\rho },{\varvec{a}},v)\). Thus, we have \({\mathcal {R}}_{\varvec{a}}({\varvec{c}})\ge 0\) if \(\rho \theta \in [0,\Theta ((1{-}\theta )\rho ,{\varvec{a}})]\), where

$$\begin{aligned} \Theta (\widetilde{\rho }, {\varvec{a}}){:}= \inf \Big \{\, \frac{M({\varvec{a}},v)+ \widehat{n}(\widetilde{\rho },{\varvec{a}},v)}{ b F_1(v/b)} \,\Big | \, v\ge 0, \ v\ne b \, \Big \}. \end{aligned}$$

Since \(\widehat{n}\ge 0\) and \(M({\varvec{a}},v)\) grows quadratically with \(v\), the infimum is achieved at a finite value of \(v\). Since nominator and denominator are smooth functions and strictly positive for \(v\ne b\), it suffices to control the behavior for \(v \rightarrow b\). Writing \(w=a/b^2\) and \(v=b{+}\delta \) we have

$$\begin{aligned} M({\varvec{a}},v)\!=\! \mu (w) \delta ^2 \text { with }\mu (w)\!=\!1 {-} \log w {-} w \quad \text {and} \quad \widehat{n}({\varvec{a}},v)\!=\!\frac{2(1{+}w) (\widetilde{\rho }w)}{1+w+\widetilde{\rho }w} \delta ^2 + O(|\delta |^3). \end{aligned}$$

We see that \(\mu (w)+\frac{2(1{+}w) (\widetilde{\rho }w)}{1+w+\widetilde{\rho }w}>0\) for all \(w>0\) if and only if \(\widetilde{\rho }>1/\kappa _*\) with \(\kappa _*\) defined in Lemma 4.3. Thus, we have proved \(\Theta (\widetilde{\rho },{\varvec{a}})>0\), but without an explicit lower bound.

From the definition of \(\widehat{n}\) via \(N_{\widetilde{\rho }}\) it is clear that \(\partial _{\widehat{\rho }} \widehat{n}\ge 0\), which implies the monotonicity of \(\Theta (\cdot ,{\varvec{a}})\). Scaling arguments give \(M({\varvec{a}},v)+ \widehat{n}({\varvec{a}},v)= b^2\big ( M(a/b^2,1,v/b)+ \widehat{n}(a/b^2,1,v/b)\big )\). By scaling the denominator as well leads to \( \Theta (\widetilde{\rho },a,b)= b \Xi (\widetilde{\rho },a/b^2) \text { with} \Xi (\widetilde{\rho },w)=\Theta (\widetilde{\rho },w,1). \)

From \(N_{\widetilde{\rho }} \ge 0\) we easily see

$$\begin{aligned} \Xi (\widetilde{\rho },w) \ge \inf \{\, M(w,1,v)/F_1(v) \, | \, v>0 \,\} = \mu (w) \inf \{\, (v{-}1)^2/F_1(v) \, | \, v>0 \,\} = \mu (w), \end{aligned}$$

which gives a positive lower bound for \(w<1\). To see the behavior for \(w\ge 1\) we express \(\widehat{n}\) in terms of the Legendre transform \(\gamma _*\) of \(\gamma (z)=(z{-}1)\log z\), i.e. \(\gamma _*(\zeta )=\sup \{\, z \zeta - \gamma (z) \, | \, z>0 \,\} \). Obviously \(\gamma _* \in \mathrm C^\infty ({\mathbb {R}};{\mathbb {R}})\) with \(\gamma '_*(\zeta ) >0\) everywhere. The behavior is

$$\begin{aligned} \gamma _*(\zeta )\approx -\log |\zeta | \text { for }\zeta \ll 1,\quad \gamma _*(0)=0,\quad \gamma _*(\zeta )\approx \mathrm {e}^{\zeta } \text { for }\zeta \gg 1. \end{aligned}$$

Using the scaling laws for \(F_1\) and \(F_0\), see (3.4), we have

$$\begin{aligned} \alpha F_1(s)+F_0(s)=F_1(\alpha s) + F_0(\alpha s) - s(\alpha \log a +\alpha -1) + \alpha + \log \alpha -1 \end{aligned}$$

and conclude \(\min \{\, \alpha F_1(s){+} F_0(s) {-} \beta s \, | \, s>0 \,\} = \alpha + \log \alpha -1 - \gamma _*\big ( \beta /\alpha {+} \log \alpha {+} 1 {-} 1/\alpha \big )\). We use this expression for \(N_{\widetilde{\rho }}\) with \(b=1\), \(u=a sv^2\) and \(\alpha =(1{+}\widetilde{\rho })a\) to obtain

$$\begin{aligned} \widehat{n}(\widetilde{\rho },a,1,v)= v^2\Big (\alpha {+}\log \alpha -1 - \gamma _*\big (1{+}\log \alpha -1/\alpha - \widehat{\rho }\, \log v^2 \big ) \Big )-\alpha \widehat{\rho }(v^2{-}1) \end{aligned}$$

with \(\widehat{\rho }=\tfrac{\widetilde{\rho }}{1+\widetilde{\rho }} > \frac{1}{1+\kappa _*}\). Now the infimum \(\Xi (\widetilde{\rho },a)\) can be found numerically by minimizing \(\big (\mu (a)(v{-}1)^2+\widehat{n}(\widetilde{\rho },a,1,v)\big )/F_1(v)\) with respect to \(v>0\).

Moreover, the function \(\xi (\rho ){:}=\inf \{\, \Xi (\rho ,a) \, | \, a>0 \,\} \) can be obtained directly by minimizing \(h(a,\rho ,v,w)=(1{-}a{-} \log a) (v{-}1)^2 + a\rho F_1(w v) + v^2(a F_1(w/v)+F_0(w/v))\) with respect to \(a>0\) first. Using \((v{-}1)^2 = F_1(w v)- 2 v F_1(w) + v^2 F_1(w/v)\) we obtain

$$\begin{aligned} H(\rho ,v,w){:}=\inf _{a>0} h(a,\rho ,v,w)= (v{-}1)^2\Big (2 + \log \big ( \tfrac{2v F_1(w)+ (\rho {-}1)F_1(wv)}{ (v{-}1)^2}\big ) \Big ) + v^2 F_0(\tfrac{w}{v}) \end{aligned}$$

and conclude

$$\begin{aligned} \xi (\rho ) = \inf \Big \{\, \frac{H(\rho ,v,w)}{F_1(v)} \,\Big | \, 1\ne v>0,\ w>0 \, \Big \}. \end{aligned}$$

Clearly \(\xi (1/\kappa _*)=0\), and numerically we find \(\xi (1/\kappa _*)=0\), \(\xi (1.36976)\approx 1.0\), \(\xi (1.5)=1.3038\), \(\xi (2)=1.99374\), and \(\xi (3)=2.669\). This concludes the proof of Lemma 4.6. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mielke, A., Haskovec, J. & Markowich, P.A. On Uniform Decay of the Entropy for Reaction–Diffusion Systems. J Dyn Diff Equat 27, 897–928 (2015). https://doi.org/10.1007/s10884-014-9394-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-014-9394-x

Keywords

Mathematics Subject Classification

Navigation