Skip to main content
Log in

General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback

  • Published:
Journal of Dynamical and Control Systems Aims and scope Submit manuscript

Abstract

In this paper, we consider a viscoleastic equation with a nonlinear feedback localized on a part of the boundary and a relaxation function satisfying g(t) ≤−ξ(t)G(g(t)). We establish an explicit and general decay rate results, using the multiplier method and some properties of the convex functions. Our results are obtained without imposing any restrictive growth assumption on the damping term. This work generalizes and improves earlier results in the literature, in particular those of Messaoudi (Topological Methods in Nonlinear Analysis 51(2):413–427, 2018), Messaoudi and Mustafa (Nonlinear Analysis: Theory Methods & Applications 72(9–10):3602–3611, 2010), Mustafa (Mathematical Methods in the Applied Sciences 41(1): 192–204, 2018) and Wu (Zeitschrift für angewandte Mathematik und Physik 63(1):65–106, 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Messaoudi SA. Al-khulaifi General and optimal decay for a viscoelastic equation with boundary feedback. Topological Methods in Nonlinear Analysis 2018;51(2):413–427.

    MathSciNet  Google Scholar 

  2. Messaoudi SA, Mustafa MI. On convexity for energy decay rates of a viscoelastic equation with boundary feedback. Nonlinear Analysis: Theory Methods & Applications 2010;72(9-10):3602–3611.

    Article  MathSciNet  MATH  Google Scholar 

  3. Mustafa MI. Optimal decay rates for the viscoelastic wave equation. Mathematical Methods in the Applied Sciences 2018;41(1):192–204.

    Article  MathSciNet  MATH  Google Scholar 

  4. Wu S-T. General decay and blow-up of solutions for a viscoelastic equation with nonlinear boundary damping-source interactions. Zeitschrift für angewandte Mathematik und Physik 2012;63(1):65–106.

    Article  MathSciNet  MATH  Google Scholar 

  5. Dafermos CM. Asymptotic stability in viscoelasticity. Archive for rational mechanics and analysis 1970;37(4):297–308.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dafermos CM. An, abstract volterra equation with applications to linear viscoelasticity. Journal of Differential Equations 1970;7(3):554–569.

    Article  MathSciNet  MATH  Google Scholar 

  7. Hrusa WJ. Global existence and asymptotic stability for a semilinear hyperbolic volterra equation with large initial data. SIAM journal on mathematical analysis 1985; 16(1):110–134.

    Article  MathSciNet  MATH  Google Scholar 

  8. Dassios G, Zafiropoulos F. Equipartition of energy in linearized 3-d viscoelasticity. Q Appl Math 1990;48(4):715–730.

    Article  MathSciNet  MATH  Google Scholar 

  9. Fabrizio M, Morro A. 1992. Mathematical problems in linear viscoelasticity, vol. 12. Siam.

  10. Messaoudi SA. General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Analysis: Theory Methods & Applications 2008;69(8): 2589–2598.

    Article  MathSciNet  MATH  Google Scholar 

  11. Messaoudi SA. General decay of solutions of a viscoelastic equation. J Math Anal Appl 2008;341(2):1457–1467.

    Article  MathSciNet  MATH  Google Scholar 

  12. Han X, Wang M. General decay of energy for a viscoelastic equation with nonlinear damping. Mathematical Methods in the Applied Sciences 2009;32(3):346–358.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu W. 2009. General decay of solutions to a viscoelastic wave equation with nonlinear localized damping. In: Annales academiScientiarum fennicæ. Mathematica, vol 34, pp 291–302.

  14. Liu W. General decay rate estimate for a viscoelastic equation with weakly nonlinear time-dependent dissipation and source terms. Journal of Mathematical Physics 2009;50 (11):113506.

    Article  MathSciNet  MATH  Google Scholar 

  15. Messaoudi SA, Mustafa MI. On the control of solutions of viscoelastic equations with boundary feedback. Nonlinear Analysis: Real World Applications 2009;10(5):3132–3140.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mustafa MI. Uniform decay rates for viscoelastic dissipative systems. J Dyn Control Syst 2016;22(1):101–116.

    Article  MathSciNet  MATH  Google Scholar 

  17. Mustafa MI. Well posedness and asymptotic behavior of a coupled system of nonlinear viscoelastic equations. Nonlinear Analysis: Real World Applications 2012;13(1): 452–463.

    Article  MathSciNet  MATH  Google Scholar 

  18. Park JY, Park SH. General decay for quasilinear viscoelastic equations with nonlinear weak damping. Journal of Mathematical Physics 2009;50(8):083505.

    Article  MathSciNet  MATH  Google Scholar 

  19. Wu S-T. General decay for a wave equation of kirchhoff type with a boundary control of memory type. Boundary Value Problems 2011;2011(1):55.

    Article  MathSciNet  MATH  Google Scholar 

  20. Lasiecka I, Tataru D, et al. Uniform boundary stabilization of semilinear wave equations with nonlinear boundary damping. Differential Integral Equations 1993; 6(3):507–533.

    MathSciNet  MATH  Google Scholar 

  21. Alabau-Boussouira F, Cannarsa P. A general method for proving sharp energy decay rates for memory-dissipative evolution equations. Comptes Rendus Mathematiqué, 2009;347(15-16):867–872.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cavalcanti MM, Domingos Cavalcanti VN, Lasiecka I, Falcao Nascimento FA. Intrinsic decay rate estimates for the wave equation with competing viscoelastic and frictional dissipative effects. Discrete & Continuous Dynamical Systems-Series B 2014;19 (7):1987–2011.

    Article  MathSciNet  MATH  Google Scholar 

  23. Cavalcanti MM, Cavalcanti AD, Lasiecka I, Wang X. Existence and sharp decay rate estimates for a von karman system with long memory. Nonlinear Analysis: Real World Applications 2015;22:289–306.

    Article  MathSciNet  MATH  Google Scholar 

  24. Guesmia A. Asymptotic stability of abstract dissipative systems with infinite memory. J Math Anal Appl 2011;382(2):748–760.

    Article  MathSciNet  MATH  Google Scholar 

  25. Lasiecka I, Messaoudi SA, Mustafa MI. Note on intrinsic decay rates for abstract wave equations with memory. Journal of Mathematical Physics 2013;54(3):031504.

    Article  MathSciNet  MATH  Google Scholar 

  26. Lasiecka I, Wang X. 2014. Intrinsic decay rate estimates for semilinear abstract second order equations with memory. In: New prospects in direct, inverse and control problems for evolution equations, pp 271–303. Springer.

  27. Mustafa MI. On the control of the wave equation by memory-type boundary condition. Discrete & Continuous Dynamical Systems-A 2015;35(3):1179–1192.

    Article  MathSciNet  MATH  Google Scholar 

  28. Xiao T-J, Liang J. Coupled second order semilinear evolution equations indirectly damped via memory effects. Journal of Differential Equations 2013;254(5):2128–2157.

    Article  MathSciNet  MATH  Google Scholar 

  29. Mustafa MI, Messaoudi SA. General stability result for viscoelastic wave equations. Journal of Mathematical Physics 2012;53(5):053702.

    Article  MathSciNet  MATH  Google Scholar 

  30. Cavalcanti MM, Cavalcanti VND, Lasiecka I, Webler CM. Intrinsic decay rates for the energy of a nonlinear viscoelastic equation modeling the vibrations of thin rods with variable density. Advances in Nonlinear Analysis 2017;6(2):121–145.

    Article  MathSciNet  MATH  Google Scholar 

  31. Messaoudi SA, Al-Khulaifi W. General and optimal decay for a quasilinear viscoelastic equation. Appl Math Lett 2017;66:16–22.

    Article  MathSciNet  MATH  Google Scholar 

  32. Cavalcanti M, Cavalcanti VD, Prates Filho J, Soriano J, et al. Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping. Differential and integral equations 2001;14(1):85–116.

    MathSciNet  MATH  Google Scholar 

  33. Cavalcanti M, Cavalcanti VD, Martinez P. General decay rate estimates for viscoelastic dissipative systems. Nonlinear Analysis: Theory Methods & Applications 2008; 68(1):177–193.

    Article  MathSciNet  MATH  Google Scholar 

  34. Alabau-Boussouira F. Convexity and weighted integral inequalities for energy decay rates of nonlinear dissipative hyperbolic systems. Appl Math Optim 2005;51(1):61–105.

    Article  MathSciNet  MATH  Google Scholar 

  35. Cavalcanti MM, Cavalcanti VND, Lasiecka I. Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping–source interaction. Journal of Differential Equations 2007;236(2):407–459.

    Article  MathSciNet  MATH  Google Scholar 

  36. Guesmia A. Well-posedness and optimal decay rates for the viscoelastic kirchhoff equation. Boletim da Sociedade Paranaense de Matematicá, 2017;35(3):203–224.

    Article  MathSciNet  Google Scholar 

  37. Guesmia A. A new approach of stabilization of nondissipative distributed systems. SIAM journal on control and optimization 2003;42(1):24–52.

    Article  MathSciNet  MATH  Google Scholar 

  38. Cavalcanti M, Guesmia A, et al. General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type. Differential and Integral equations 2005;18(5):583–600.

    MathSciNet  MATH  Google Scholar 

  39. Berrimi S, Messaoudi SA. 2004. Exponential decay of solutions to a viscoelastic equation with nonlinear localized damping., Electronic Journal of Differential Equations (EJDE)[electronic only], vol. 2004, pp Paper–No.

  40. Komornik V. 1994. Exact controllability and stabilization: the multiplier method, vol. 36. Masson.

  41. Arnol’d VI. 2013. Mathematical methods of classical mechanics, vol. 60. Springer Science & Business Media.

Download references

Acknowledgments

The authors thank KFUPM for its continuous support. This work was funded by KFUPM under Project #IN161006.

Funding

This work was funded by KFUPM under Project #IN161006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad M. Al-Gharabli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gharabli, M.M., Al-Mahdi, A.M. & Messaoudi, S.A. General and Optimal Decay Result for a Viscoelastic Problem with Nonlinear Boundary Feedback. J Dyn Control Syst 25, 551–572 (2019). https://doi.org/10.1007/s10883-018-9422-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10883-018-9422-y

Keywords

Mathematics Subject Classification (2010)

Navigation