Skip to main content
Log in

Analysis of a mathematical model of apoptosis: individual differences and malfunction in programmed cell death

Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

Apoptosis is an important area of research because of its role in keeping a mature multicellular organism’s number of cells constant, hence, ensuring that the organism does not have cell accumulation that may transform into cancer with additional hallmarks. Firstly, we have carried out sensitivity analysis on an existing mathematical mitochondria-dependent apoptosis model to find out which parameters have a role in causing monostable cell survival, which may, in turn, lead to malfunction in apoptosis. We have then generated three base parameter sets that represent healthy cells. These parameter sets were built by changing the sensitive parameters while preserving the bistability. For each base set, we varied the proapoptotic and antiapoptotic production rates, to yield new sets for the cells that have malfunctioning apoptosis. In a hypothetical cell model, we simulated caspase-3 activation by numerically integrating the governing ordinary differential equations of a mitochondria-dependent apoptosis model. These simulations were carried out for four potential treatments, namely: (1) proteasome inhibitor treatment, (2) Bcl-2 inhibitor treatment, (3) IAP inhibitor treatment, (4) Bid-like synthetic peptides treatment. The results suggest that the proteasome inhibitor treatment is the most effective treatment, though it may have severe side effects. For this treatment, the amount of proteasome inhibitor needed for caspase-3 activation may be different for hypothetical cells with a different pro- or anti-apoptotic protein defect. It is also found that caspase-3 can be activated by Bcl-2 inhibitor treatment only in those hypothetical malfunctioning cells with Bax deficiency but not in others. These results are in line with the view that molecular heterogeneity in individuals may be an important factor in determining the individuals’ positive or negative responses to treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Betensky RA, Louis DN, Cairncross JG. Influence of unrecognized molecular heterogeneity on randomized clinical trials. J Clin Oncol. 2002;20:2495–9. doi:10.1200/JCO.2002.06.140.

    Article  PubMed  Google Scholar 

  2. Pommier Y, Sordet O, Antony S, Hayward RL, Kohn KW. Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene. 2004;23:2934–49. doi:10.1038/sj.onc.1207515.

    Article  PubMed  CAS  Google Scholar 

  3. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I. Bistability in apoptosis: roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J. 2006;90:1546–59. doi:10.1529/biophysj.105.068122.

    Article  PubMed  CAS  Google Scholar 

  4. Hector S, Prehn JHM. Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim Biophys Acta. 2009;1795:117–29. doi:10.1016/j.bbcan.2008.12.002.

    PubMed  CAS  Google Scholar 

  5. Nair VD, Yuen T, Olanow CW, Sealfon SC. Early single cell bifurcation of pro- and antiapoptotic states during oxidative stress. J Biol Chem. 2004;279:27494–501. doi:10.1074/jbc.M3121352006.

    Article  PubMed  CAS  Google Scholar 

  6. Spencer SL, Sorger PK. Measuring and modeling apoptosis in single cells. Cell. 2011;144:926–39. doi:10.1016/j.cell.2011.03.002.

    Article  PubMed  CAS  Google Scholar 

  7. Li H, Yi T, Wu Z. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer. 2008;8:135–41. doi:10.1186/1471-2407-8-135.

    Article  PubMed  Google Scholar 

  8. Fussenegger M, Bailey JE, Varner J. A mathematical model of caspase function in apoptosis. Nat Biotechnol. 2000;18:768–74. doi:10.1038/77589.

    Article  PubMed  CAS  Google Scholar 

  9. Eissing T, Conzelmann H, Gilles ED, Allgower F, Bullinger E, Scheurich P. Bistability analyses of a caspase activation model for receptor-induced apoptosis. J Biol Chem. 2004;279:36892–7. doi:10.1074/jbc.M404893200.

    Article  PubMed  CAS  Google Scholar 

  10. Salvioli S, Capri M, Tieri P, Loroni J, Barbi C, Invidia L, Altilia S, Santoro A, Pirazzini C, Pierini M, Bellavista E, Alberghina L, Franceschi C. Different types of cell death in organismal aging and longevity: state of the art and possible systems biology approach. Curr Pharm Des. 2008;14:226–36. doi:10.2174/138161208783413266.

    Article  PubMed  CAS  Google Scholar 

  11. Albeck JG, Burke JM, Spencer SL, Lauffenburger DA, Sorger PK. Modeling a snap-action, variable-delay switch controlling extrinsic cell death. PLoS Biol. 2008;6:2831–52. doi:10.1371/journal.pbio.0060299.

    Article  PubMed  CAS  Google Scholar 

  12. Albeck JG, Burke JM, Spencer SM, Lauffenburger DA, Sorger PK. Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell. 2008;30:11–25. doi:10.1016/j.molcel.2008.02.012.

    Article  PubMed  CAS  Google Scholar 

  13. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout B, Bahar I. Computational insights on the competing effects of nitric oxide in regulating apoptosis. PLoS ONE. 2008;3:e2249. doi:10.1371/journal.pone.0002249.

    Article  PubMed  Google Scholar 

  14. Golovchenko EN, Hanin LG, Kaufmann SH, Tyurin KV, Khanin MA. Dynamics of granzyme B-induced apoptosis: mathematical modeling. Math Biosci. 2008;212:54–68. doi:10.1016/j.mbs.2007.12.002.

    Article  PubMed  CAS  Google Scholar 

  15. Han L, Zhao Y, Jia X. Mathematical modeling identified c-FLIP as an apoptotic switch in death receptor induced apoptosis. Apoptosis. 2008;13:198–1204. doi:10.1007/s10495-008-0252-3.

    Article  Google Scholar 

  16. Harrington KA, Ho KL, Ghosh S, Tung KC. Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model. 2008;5:26–40. doi:10.1186/1742-4682-5-26.

    Article  PubMed  Google Scholar 

  17. Lavrik IN, Golks A, Riess D, Bentele M, Eils R, Krammer PH. Analysis of CD95 threshold signaling: triggering of CD95 (FAS/APO-1) at low concentrations primarily results in survival signaling. J Biol Chem. 2007;282:13664–71.

    Article  PubMed  CAS  Google Scholar 

  18. Legewie S, Blüthgen N, Herzel H. Mathematical modeling identifies inhibitors of apoptosis as mediators of positive feedback and bistability. PLoS Comput Biol. 2006;2:e120. doi:10.1371/journal.pcbi.0020120.

    Article  PubMed  Google Scholar 

  19. O’Connor CL, Anguissola S, Huber HJ, Dussmann H, Prehn JHM, Rehm M. Intracellular signaling dynamics during apoptosis execution in the presence or absence of X-linked-inhibitor-of-apoptosis-protein. Biochim Biophys Acta. 2008;1783:1903–13. doi:10.1016/j.bbamcr.2008.05.025.

    Article  PubMed  Google Scholar 

  20. Okazaki N, Asano R, Kinoshita T, Chuman H. Simple computational models of type I/type II cells in Fas signaling-induced apoptosis. J Theor Biol. 2008;250:621–33. doi:10.1016/j.jtbi.2007.10.030.

    Article  PubMed  CAS  Google Scholar 

  21. Rangamani P, Sirovich L. Survival and apoptotic pathways initiated by TNF-alpha: modeling and predictions. Biotechnol Bioeng. 2007;97:1216–29. doi:10.1002/bit.21307.

    Article  PubMed  CAS  Google Scholar 

  22. Raychaudhuri S, Wilgohs E, Nguyen TN, Khan EM, Golkorn T. Monte Carlo simulation of cell death signaling predicts large cell-to-cell stochastic fluctuations through the type 2 pathway of apoptosis. Biophys J. 2008;95:3559–62. doi:10.1529/biophysj.108.135483.

    Article  PubMed  CAS  Google Scholar 

  23. Calzone L, Tournier L, Fourquet S, Thieffry D, Zhivotovsky B, Barillot E, Zinovyev A. Mathematical modelling of cell-fate decision in response to death receptor engagement. PLoS Comput Biol. 2010;6:e1000702. doi:10.1371/journal.pcbi.1000702.

    Article  PubMed  Google Scholar 

  24. Zhang TL, Brazhnik P, Tyson JJ. Computational analysis of dynamical responses to the intrinsic pathway of programmed cell death. Biophys J. 2009;97:415–34. doi:10.1016/j.bpj.2009.04.053.

    Article  PubMed  CAS  Google Scholar 

  25. Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH, Lavrik IN, Eils R. Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Sys Biol 6, Art. No. 352 (2010). doi:10.1038/msb.2010.6.

  26. Zhang T, Wu M, Chen Q, Sun ZR. Investigation into the regulation mechanisms of TRAIL apoptosis pathway by mathematical modeling. Acta Biochim Biophys Sin. 2010;42:98–108. doi:10.1093/abbs/gmp114.

    Article  PubMed  Google Scholar 

  27. Dogu Y, Diaz J. Mathematical model of a network of interaction between p53 and Bcl-2 during genotoxic-induced apoptosis. Biophys Chem. 2009;143:44–54. doi:10.1016/j.bpc.2009.03.012.

    Article  PubMed  CAS  Google Scholar 

  28. Harrington HA, Ho KL, Ghosh S, and Tung KC. Construction and analysis of a modular model of caspase activation in apoptosis. Theor Biol Med Model, 5, Art. No. 26 (2008). doi:10.1186/1742-4682-5-26.

  29. Huber HJ, Plchut M, Weisova P, Dussmann H, Wenus J, Rehm M, Ward MW, Prehn JHM. TOXI-SIM-A simulation tool for the analysis of mitochondrial and plasma membrane potentials. J Neurosci Methods. 2009;176:270–5. doi:10.1016/j.jneumeth.2008.09.003.

    Article  PubMed  CAS  Google Scholar 

  30. Foo J, Leder K, Michor F. Stochastic dynamics of cancer initiation. Phys Biol. 2011;8:015002. doi:10.1088/1478-3975/8/1/015002.

    Article  PubMed  Google Scholar 

  31. Majumder D, Mukherjee A. A passage through systems biology to systems medicine: adoption of middle-out rational approaches towards the understanding of therapeutic outcomes in cancer. Analyst. 2011;136:663–78. doi:10.1039/C0AN00746C.

    Article  PubMed  CAS  Google Scholar 

  32. Vainstein V, Kirnasovsky OU, Kogan Y, Agur Z. Strategies for cancer stem cell elimination: insights from mathematical modeling. J Theor Biol. 2012;298:32–41. doi:10.1016/j.jtbi.2011.12.016.

    Article  PubMed  Google Scholar 

  33. Sen SM, Bagci EZ, Camurdan MC. Bistability analysis of an apoptosis model in the presence of nitric oxide. Bull Math Biol. 2011;73:1952–68. doi:10.1007/s11538-010-9613-5.

    Article  PubMed  CAS  Google Scholar 

  34. di Pietro C, Ragusa M, Barbagallo D, Duro LR, Guglielmino MR, Majorana A, Angelica R, Scalia M, Statello L, Salito L, Tomasello L, Pernagallo S, Valenti S, D’Agostino V, Triberio P, Tandurella I, Palumbo GA, La Cava P, Cafiso V, Bertuccio T, Santagati M, Li Destri G, Lanzafame S, Di Raimondo F, Stefani S, Mishra B, Purrello M. The apoptotic machinery as a biological complex system: analysis of its omics and evolution, identification of candidate genes for fourteen major types of cancer, and experimental validation in CML and neuroblastoma. BMC Med Genomics. 2009;2:20–54. doi:10.1186/1755-8794-2-20.

    Article  PubMed  Google Scholar 

  35. Weinberg RA. The biology of cancer. New York: Garland Science; 2007.

    Google Scholar 

  36. Ermentrout B. Simulating, analyzing and animating dynamical systems. A guide to XPPAUT for researchers and students. Philadelphia: SIAM; 2002.

    Book  Google Scholar 

  37. Strogatz SH. Nonlinear dynamics and chaos with applications to physics, biology, chemistry and engineering. Cambridge: Westview Press; 2000.

    Google Scholar 

  38. Shoemaker JE, Doyle FJ. Identifying fragilities in biochemical networks: robust performance analysis of Fas signaling-induced apoptosis. Biophys J. 2008;95:2610–23. doi:10.1529/biophysj.107.123398.

    Article  PubMed  CAS  Google Scholar 

  39. Box GE, Hunter WG, Hunter JS. Statistics for experiments. An introduction to design, data analysis, and model building. New York: Wiley; 1978.

    Google Scholar 

  40. Sharma VK, Sharma A, Kumar N, Khandelwal M, Mandapati KK, Horn-Saban S, Strichman-Almashanu L, Lancet D, Brahmachari SK. Expoldb: expression linked polymorphism database with inbuilt tools for analysis of expression and simple repeats. BMC Genomics. 2006;7:258–65. doi:10.1186/1471-2164-7-258.

    Article  PubMed  Google Scholar 

  41. McConkey DJ, Zhu K. Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat. 2008;11:164–79. doi:10.1016/j.drup.2008.08.002.

    Article  PubMed  CAS  Google Scholar 

  42. Arkin M. Protein-protein interactions and cancer: small molecules going in for the kill. Curr Opin Chem Biol. 2005;9:317–24. doi:10.1016/j.cbpa.2005.03.001.

    Article  PubMed  CAS  Google Scholar 

  43. Walensky LD, Kung AL, Escher I, Malia TJ, Barbuto S, Wright RD, Wagner G, Verdine GL, Korsmeyer SJ. Activation of apoptosis in vivo by a hydrocarbon-stapled BH3 helix. Science. 2004;305:1466–70.

    Article  PubMed  CAS  Google Scholar 

  44. Ludwig H, Khayat D, Giaccone C, Facon T. Proteasome inhibition and its clinical prospects in the treatment of hematologic and solid malignancies. Cancer. 2005;104:1794–807. doi:10.1002/cncr.21414.

    Article  PubMed  CAS  Google Scholar 

  45. Poulaki V, Mitsiades CS, Kotoula V, Negri J, McMillin DG, Miller JW, Mitsiades N. The proteasome inhibitor bortezomib induces apoptosis in human retinoblastoma cell lines in vitro. Invest Opthalmol Vis Sci. 2007;48:4706–19. doi:10.1167/iovs.06-1147.

    Article  Google Scholar 

  46. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 1998;17:1675–87. doi:10.1093/emboj/17.6.1675.

    Article  PubMed  CAS  Google Scholar 

  47. Caron H, van Schaik B, van der Mee A, Baas F, Riggins G, van Sluis P, Hermus MC, van Asperen R, Boon K, Voute PA, Heisterkamp S, van Kampen A, Versteeg R. The human transcriptome map: clustering of highly expressed genes in chromosomal domains. Science. 2001;291:1289–92.

    Article  PubMed  CAS  Google Scholar 

  48. NCI60 Cancer Microarray Project [http://genome-www.stanford.edu/nci60/].

  49. Oncogenomics datasets [http://home.ccr.cancer.gov/oncology/oncogenomics/].

  50. Kitano H. Computational systems biology. Nature. 2002;420:206–10. doi:10.1038/nature01254.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ivet Bahar for insightful comments, Nesrin Ozoren for helpful discussions. We also thank Turkan Haliloglu for providing computational facilities for this study. Elife Zerrin Bagci gratefully acknowledges fellowship provided by TÜBİTAK-BİDEB 2218.

Conflict of interest

Authors do not have any conflict of interest or commercial interest in any product mentioned in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elife Zerrin Bagci.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 215 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bagci, E.Z., Sen, S.M. & Camurdan, M.C. Analysis of a mathematical model of apoptosis: individual differences and malfunction in programmed cell death. J Clin Monit Comput 27, 465–479 (2013). https://doi.org/10.1007/s10877-013-9468-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-013-9468-z

Keywords

Navigation