Skip to main content
Log in

Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Zinc oxide nanoparticles (ZnO NPs) were synthesized by Carica papaya leaf extract. The nanoparticles were characterized by UV–Vis spectrum, Fourier Transform Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Dynamic light scattering (DLS) analyser and Energy-dispersive X-ray spectroscopy analysis with a scanning electron microscope (SEM–EDX). The ZnO NPs were assessed using 2,2′-Azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay with varying ZnO NP concentration, showed scavenging activity with the half maximal inhibitory concentration (IC50) = 130.1 and 104.9 µg/mL−1 respectively. Antifungal studies were conducted for ZnO NPs against S. sclerotiorum, R. necatrix and Fusarium species, which demonstrated a higher inhibition rate for S. sclerotiorum (59.7%). Seeds of chickpea were separately treated with various concentrations of ZnO NPs. An exposure to ZnO NPs (25%, 50%, 75% and 100%) and control caused significant changes in seed germination, root length, shoot length and antioxidant enzyme were studied. Compared with control the maximum seed germination, root and plant growth was observed with the treatment of ZnO NPs. Superoxide dismutase and catalase activity increased due to ZnO NPs treatment. This suggest that ZnO NPs may significantly alter antioxidant metabolism during seed germination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H. Abdul Salam, R. Sivaraj, and R. Venckatesh (2014). Green synthesis and characterization of zinc oxide nanoparticles from Ocimum basilicum L. var purpurascens Benth.-Lamiaceae leaf extract. Mater. Lett.. https://doi.org/10.1016/j.matlet.2014.05.033.

    Article  Google Scholar 

  2. H. Agarwal, S. Venkat Kumar, and S. Rajeshkumar (2017). A review on green synthesis of zinc oxide nanoparticles—an eco-friendly approach. Resource. https://doi.org/10.1016/j.reffit.2017.03.002.

    Article  Google Scholar 

  3. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M. I. Khan, R. Kumar, and M. Sastry (2003). Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. https://doi.org/10.1016/S0927-7765(02)00174-1.

    Article  Google Scholar 

  4. M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park (2009). On-chip fabrication of ZnO-nanowire gas sensor with high gas sensitivity. Sens. Actuators B. https://doi.org/10.1016/j.snb.2009.02.008.

    Article  Google Scholar 

  5. N. Amist, N. B. Singh, K. Yadav, S. C. Singh, and J. K. Pandey (2017). Comparative studies of Al3+ ions and Al2O3 nanoparticles on growth and metabolism of cabbage seedlings. J. Biotechnol.. https://doi.org/10.1016/j.jbiotec.2017.06.002.

    Article  PubMed  Google Scholar 

  6. S. J. An and G. C. Yi (2007). Near ultraviolet light emitting diode composed of n-GaN/ZnO coaxial nanorod heterostructures on a p-GaN layer. Appl. Phys. Lett. 10, (1063/1), 2786852.

    Google Scholar 

  7. K. Asada (1988). Production, scavenging and action of active oxygen. Tanpakushitsu Kakusan Koso. Protein, Nucleic Acid, Enzyme 33, 2659–2664.

    CAS  PubMed  Google Scholar 

  8. Ashish Bahuguna. (2014). Agricultural Statistics At a Glance 2014. Government of India Ministry of Agriculture Department of Agriculture and Cooperation Directorate of Economics and Statistics.

  9. A. Awasthi, S. Bansal, L. K. Jangir, G. Awasthi, K. K. Awasthi, and K. Awasthi (2017). Effect of ZnO nanoparticles on germination of triticum aestivum seeds. Macromol. Symp.. https://doi.org/10.1002/masy.201700043.

    Article  Google Scholar 

  10. P. Basnet, T. Chanu, D. Samanta, and S. Chatterjee (2018). A review on bio-synthesized zinc oxide nanoparticles using plant extracts as reductants and stabilizing agents. J. Photochem. Photobiol. B. https://doi.org/10.1016/j.jphotobiol.2018.04.036.

    Article  PubMed  Google Scholar 

  11. W. F. Beyer and I. Fridovich (1987). Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem.. https://doi.org/10.1016/0003-2697(87)90489-1.

    Article  PubMed  Google Scholar 

  12. P. Boonchuay, I. Cakmak, B. Rerkasem, and C. Prom-U-Thai (2013). Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Sci. Plant Nutr.. https://doi.org/10.1080/00380768.2013.763382.

    Article  Google Scholar 

  13. I. Cakmak (2000). Tansley review no. 111: possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol.. https://doi.org/10.1046/j.1469-8137.2000.00630.x.

    Article  PubMed  Google Scholar 

  14. I. Cakmak and W. J. Horst (1991). Effect of aluminium on lipid peroxidation, superoxide dismutase, catalase, and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant. https://doi.org/10.1111/j.1399-3054.1991.tb00121.x.

    Article  Google Scholar 

  15. J. H. Choi, J. P. Kar, D. Y. Khang, and J. M. Myoung (2009). Enhanced performance of ZnO nanocomposite transistor by simple mechanical compression. J. Phys. Chem. C. https://doi.org/10.1021/jp810669c.

    Article  Google Scholar 

  16. D. Das, B. C. Nath, P. Phukon, A. Kalita, and S. K. Dolui (2013). Synthesis of ZnO nanoparticles and evaluation of antioxidant and cytotoxic activity. Colloids Surf. B. https://doi.org/10.1016/j.colsurfb.2013.06.041.

    Article  Google Scholar 

  17. A. Datta, C. Patra, H. Bharadwaj, S. Kaur, N. Dimri, and R. Khajuria (2017). Green synthesis of zinc oxide nanoparticles using parthenium hysterophorus leaf extract and evaluation of their antibacterial properties. J. Biotechnol. Biomater.. https://doi.org/10.4172/2155-952x.1000271.

    Article  Google Scholar 

  18. S. K. Dhoke, P. Mahajan, and A. S. Khanna (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. J. Nanotechnol.. https://doi.org/10.1155/2011/696535.

    Article  Google Scholar 

  19. C. O. Dimkpa, J. E. Mclean, D. W. Britt, and A. J. Anderson (2012). CuO and ZnO nanoparticles differently affect the secretion of fluorescent siderophores in the beneficial root colonizer, Pseudomonas chlororaphis O6. Nanotoxicology. https://doi.org/10.3109/17435390.2011.598246.

    Article  PubMed  Google Scholar 

  20. A. Dubey and D. R. Mailapalli (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. Sustain. Agric. Rev.. https://doi.org/10.1007/978-3-319-26777-7_7.

    Article  Google Scholar 

  21. A. M. Edwin Suresh Raj, C. Mallika, K. Swaminathan, O. M. Sreedharan, and K. S. Nagaraja (2002). Zinc(II) oxide-zinc(II) molybdate composite humidity sensor. Sens. Actuators B. https://doi.org/10.1016/S0925-4005(01)00957-1.

    Article  Google Scholar 

  22. R. S. R. El-Mohamedy and A. M. Abdalla (2014). Evaluation of antifungal activity of Moringa oleifera extracts as natural fungicide against some plant pathogenic fungi in-vitro. J. Agric. Technol. 10, 963–982.

    Google Scholar 

  23. K. Elumalai and S. Velmurugan (2015). Green synthesis, characterization and antimicrobial activities of zinc oxide nanoparticles from the leaf extract of Azadirachta indica (L.). Appl. Surf. Sci.. https://doi.org/10.1016/j.apsusc.2015.03.176.

    Article  Google Scholar 

  24. K. Elumalai, S. Velmurugan, S. Ravi, V. Kathiravan, and S. Ashokkumar (2015). Bio-fabrication of zinc oxide nanoparticles using leaf extract of curry leaf (Murraya koenigii) and its antimicrobial activities. Mater. Sci. Semicond. Process.. https://doi.org/10.1016/j.mssp.2015.01.048.

    Article  Google Scholar 

  25. M. N. Esfahani (2012). Present status of Fusarium dry rot of potato tubers in Isfahan (Iran). Indian Phytopathol. Soc. 59, (2), 142–147.

    Google Scholar 

  26. M. Faizan, A. Faraz, M. Yusuf, S. T. Khan, and S. Hayat (2018). Zinc oxide nanoparticle-mediated changes in photosynthetic efficiency and antioxidant system of tomato plants. Photosynthetica. https://doi.org/10.1007/s11099-017-0717-0.

    Article  Google Scholar 

  27. S. W. Fan, A. K. Srivastava, and V. P. Dravid (2010). Nanopatterned polycrystalline ZnO for room temperature gas sensing. Sens. Actuators B. https://doi.org/10.1016/j.snb.2009.10.054.

    Article  Google Scholar 

  28. A. Gade, A. Ingle, C. Whiteley, and M. Rai (2010). Mycogenic metal nanoparticles: progress and applications. Biotechnol. Lett.. https://doi.org/10.1007/s10529-009-0197-9.

    Article  PubMed  Google Scholar 

  29. H. Gao, F. Yan, J. Li, Y. Zeng, and J. Wang (2007). Synthesis and characterization of ZnO nanorods and nanoflowers grown on GaN-based LED epiwafer using a solution deposition method. J. Phys. D. https://doi.org/10.1088/0022-3727/40/12/015.

    Article  Google Scholar 

  30. M. Gericke and A. Pinches (2006). Biological synthesis of metal nanoparticles. Hydrometallurgy. https://doi.org/10.1016/j.hydromet.2006.03.019.

    Article  Google Scholar 

  31. Gnanasangeetha and I. Sarala (2014). Facile and eco-friendly method for the synthesis of zinc oxide nanoparticles using Azadirachta and Emblica. Int. J. Pharm. Sci. Res.. https://doi.org/10.13040/IJPSR.0975-8232.5(7).2866-73.

    Article  Google Scholar 

  32. M. A. Gondal, A. J. Alzahrani, M. A. Randhawa, and M. N. Siddiqui (2012). Morphology and antifungal effect of nano-ZnO and nano-Pd-doped nano-ZnO against Aspergillus and Candida. J. Environ. Sci. Health A. https://doi.org/10.1080/10934529.2012.672384.

    Article  Google Scholar 

  33. A. Gupta, P. Srivastava, L. Bahadur, D. P. Amalnerkar, and R. Chauhan (2015). Comparison of physical and electrochemical properties of ZnO prepared via different surfactant-assisted precipitation routes. Appl. Nanosci. (Switzerland). https://doi.org/10.1007/s13204-014-0379-1.

    Article  Google Scholar 

  34. B. Hafeez (2013). Role of zinc in plant nutrition-a review. Am. J. Exp. Agric.. https://doi.org/10.9734/ajea/2013/2746.

    Article  Google Scholar 

  35. A. Happy, M. Soumya, S. Venkat Kumar, S. Rajeshkumar, N. D. Sheba Rani, T. Lakshmi, and V. Deepak Nallaswamy (2019). Phyto-assisted synthesis of zinc oxide nanoparticles using Cassia alata and its antibacterial activity against Escherichia coli. Biochem. Biophys. Rep.. https://doi.org/10.1016/j.bbrep.2019.01.002.

    Article  PubMed  PubMed Central  Google Scholar 

  36. M. Hjiri, L. El Mir, S. Leonardi, N. Donato, and G. Neri (2013). CO and NO2 selective monitoring by ZnO-based sensors. Nanomaterials. https://doi.org/10.3390/nano3030357.

    Article  PubMed  PubMed Central  Google Scholar 

  37. I. Hussain, N. B. Singh, A. Singh, H. Singh, and S. C. Singh (2016). Green synthesis of nanoparticles and its potential application. Biotechnol. Lett.. https://doi.org/10.1007/s10529-015-2026-7.

    Article  PubMed  Google Scholar 

  38. P. Jaiswal, P. Kumar, V. K. Singh, and D. K. Singh (2010). Carica papaya Linn: a potential source for various health problems. J. Pharm. Res. 3, 998–1003.

    CAS  Google Scholar 

  39. S. Jebara, M. Jebara, F. Limam, and M. E. Aouani (2005). Changes in ascorbate peroxidase, catalase, guaiacol peroxidase and superoxide dismutase activities in common bean (Phaseolus vulgaris) nodules under salt stress. J. Plant Physiol.. https://doi.org/10.1016/j.jplph.2004.10.005.

    Article  PubMed  Google Scholar 

  40. Y. Jin, J. Wang, B. Sun, J. C. Blakesley, and N. C. Greenham (2008). Solution-processed ultraviolet photodetectors based on colloidal ZnO nanoparticles. Nano Lett.. https://doi.org/10.1021/nl0803702.

    Article  PubMed  Google Scholar 

  41. K. Kalishwaralal, V. Deepak, S. B. Pandian, M. Kottaisamy, S. BarathManiKanth, B. Kartikeyan, and S. Gurunathan (2010). Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces B. https://doi.org/10.1016/j.colsurfb.2010.02.007.

    Article  Google Scholar 

  42. H. R. Khan, G. K. McDonald, and Z. Rengel (2004). Zinc fertilization and water stress affects plant water relations, stomatal conductance and osmotic adjustment in chickpea (Cicer arientinum L.). Plant Soil. https://doi.org/10.1007/s11104-005-0120-7.

    Article  Google Scholar 

  43. B. J. Kim, Y. R. Ryu, T. S. Lee, and H. W. White (2009). Output power enhancement of GaN light emitting diodes with p-type ZnO hole injection layer. Appl. Phys. Lett. 10, (1063/1), 3097243.

    Google Scholar 

  44. T. V. Kolekar, S. S. Bandgar, and S. S. Shirguppikar (2013). Synthesis and characterization of ZnO nanoparticles for efficient gas sensors. Arch. Appl. Sci. Res. 5, 20–28.

    Google Scholar 

  45. H. A. Kordan (1992). Seed viability and germination: a multi-purpose experimental system. J. Biol. Educ.. https://doi.org/10.1080/00219266.1992.9655281.

    Article  Google Scholar 

  46. R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar (2015). Zinc oxide nanostructures for NO2 gas–sensor applications: a review. Nano-Micro Lett.. https://doi.org/10.1007/s40820-014-0023-3.

    Article  Google Scholar 

  47. S. S. Kumar, P. Venkateswarlu, V. R. Rao, and G. N. Rao (2013). Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett.. https://doi.org/10.1186/2228-5326-3-30.

    Article  Google Scholar 

  48. V. Kumar and S. K. Yadav (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol.. https://doi.org/10.1002/jctb.2023.

    Article  Google Scholar 

  49. Lee, H. J., Lee, G., Jang, N. R., Yun, J. H., Song, J. Y., & Kim, B. S. (2011). Biological synthesis of copper nanoparticles using plant extract. In Technical Proceedings of the 2011 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2011.

  50. H. U. Lee, K. Ahn, S. J. Lee, J. P. Kim, H. G. Kim, S. Y. Jeong, and C. R. Cho (2011). ZnO nanobarbed fibers: fabrication, sensing NO2 gas, and their sensing mechanism. Appl. Phys. Lett. 10, (1063/1), 3590202.

    Google Scholar 

  51. M. Leroch, M. Kretschmer, and M. Hahn (2011). Fungicide resistance phenotypes of botrytis cinerea isolates from commercial vineyards in South West Germany. J. Phytopathol.. https://doi.org/10.1111/j.1439-0434.2010.01719.x.

    Article  Google Scholar 

  52. Y. Li, F. Della Valle, M. Simonnet, I. Yamada, and J. J. Delaunay (2009). High-performance UV detector made of ultra-long ZnO bridging nanowires. Nanotechnology. https://doi.org/10.1088/0957-4484/20/4/045501.

    Article  PubMed  PubMed Central  Google Scholar 

  53. D. Lin and B. Xing (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut.. https://doi.org/10.1016/j.envpol.2007.01.016.

    Article  PubMed  Google Scholar 

  54. A. Lipovsky, Y. Nitzan, A. Gedanken, and R. Lubart (2011). Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology. https://doi.org/10.1088/0957-4484/22/10/105101.

    Article  PubMed  Google Scholar 

  55. C. M. Liyana-Pathirana and F. Shahidi (2005). Antioxidant activity of commercial soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J. Agric. Food Chem.. https://doi.org/10.1021/jf049320i.

    Article  PubMed  Google Scholar 

  56. C. Lu, C. Zhang, J. Wen, G. Wu, and M. Tao (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Sci. 21, 168–171.

    CAS  Google Scholar 

  57. L. Luo, Y. Zhang, S. S. Mao, and L. Lin (2006). Fabrication and characterization of ZnO nanowires based UV photodiodes. Sens. Actuators A. https://doi.org/10.1016/j.sna.2005.06.023.

    Article  Google Scholar 

  58. K. V. Madhava Rao and T. V. S. Sresty (2000). Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci.. https://doi.org/10.1016/S0168-9452(00)00273-9.

    Article  PubMed  Google Scholar 

  59. K. M. Manjaiah, R. Mukhopadhyay, R. Paul, S. C. Datta, P. Kumararaja, and B. Sarkar (2018). Clay minerals and zeolites for environmentally sustainable agriculture. Modified Clay Zeolite Nanocomposite Mater.. https://doi.org/10.1016/B978-0-12-814617-0.00008-6.

    Article  Google Scholar 

  60. K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu (1997). Growth of p-type zinc oxide films by chemical vapor deposition. Jpn. J. Appl. Phys. 36, 53–55. https://doi.org/10.1143/jjap.36.l1453.

    Article  Google Scholar 

  61. S. Moghaddasi, A. Fotovat, F. Karimzadeh, H. R. Khazaei, R. Khorassani, and A. Lakzian (2017). Effects of coated and non-coated ZnO nano particles on cucumber seedlings grown in gel chamber. Arch. Agron. Soil Sci.. https://doi.org/10.1080/03650340.2016.1256475.

    Article  Google Scholar 

  62. F. Moradi and A. M. Ismail (2007). Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann. Bot.. https://doi.org/10.1093/aob/mcm052.

    Article  PubMed  PubMed Central  Google Scholar 

  63. P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S. R. Sainkar, M. I. Khan, and M. Sastry (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett.. https://doi.org/10.1021/nl0155274.

    Article  Google Scholar 

  64. N. Jayarambabu, B. S. Kumari, K. V. Rao, and Y. T. Prabhu (2014). Germination and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol. 4, 2347–5161.

    Google Scholar 

  65. F. A. Neela, I. A. Sonia, and S. Shamsi (2014). Antifungal activity of selected medicinal plant extract on Fusarium oxysporum Schlecht the Causal agent of fusarium wilt disease in tomato. Am. J. Plant Sci.. https://doi.org/10.4236/ajps.2014.518281.

    Article  Google Scholar 

  66. B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler (2003). Spin-coated zinc oxide transparent transistors. J. Phys. D. https://doi.org/10.1088/0022-3727/36/20/L02.

    Article  Google Scholar 

  67. S. Öztürk, N. Kilinç, and Z. Z. Öztürk (2013). Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position. J. Alloy. Compd.. https://doi.org/10.1016/j.jallcom.2013.07.063.

    Article  Google Scholar 

  68. S. K. Panda and M. H. Khan (2004). Changes in growth and superoxide dismutase activity in Hydrilla verticillata L. under abiotic stress. Braz. J. Plant Physiol.. https://doi.org/10.1590/S1677-04202004000200007.

    Article  Google Scholar 

  69. S. Panigrahi, S. Kundu, S. K. Ghosh, S. Nath, and T. Pal (2004). General method of synthesis for metal nanoparticles. J. Nanopart. Res.. https://doi.org/10.1007/s11051-004-6575-2.

    Article  Google Scholar 

  70. M. R. Parra and F. Z. Haque (2014). Aqueous chemical route synthesis and the effect of calcination temperature on the structural and optical properties of ZnO nanoparticles. J. Mater. Res. Technol.. https://doi.org/10.1016/j.jmrt.2014.07.001.

    Article  Google Scholar 

  71. R. C. Pawar, J. W. Lee, V. B. Patil, and C. S. Lee (2013). Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor. Sens. Actuators B. https://doi.org/10.1016/j.snb.2012.11.100.

    Article  Google Scholar 

  72. P. Rai, S. Raj, K. J. Ko, K. K. Park, and Y. T. Yu (2013). Synthesis of flower-like ZnO microstructures for gas sensor applications. Sens. Actuators B. https://doi.org/10.1016/j.snb.2012.12.031.

    Article  Google Scholar 

  73. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med.. https://doi.org/10.1016/S0891-5849(98)00315-3.

    Article  Google Scholar 

  74. J. Rouhi, S. Mahmud, N. Naderi, C. H. Raymond Ooi, and M. R. Mahmood (2013). Physical properties of fish gelatin-based bio-nanocomposite films incorporated with ZnO nanorods. Nanoscale Res. Lett.. https://doi.org/10.1186/1556-276X-8-364.

    Article  PubMed  PubMed Central  Google Scholar 

  75. J. Rousk, K. Ackermann, S. F. Curling, and D. L. Jones (2012). Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS ONE. https://doi.org/10.1371/journal.pone.0034197.

    Article  PubMed  PubMed Central  Google Scholar 

  76. A. Z. Sadek, W. Wlodarski, K. Kalantar-Zadeh, and S. Choopun (2005). ZnO nanobelt based conductometric H2 and NO2 gas sensors. Proc. IEEE Sens.. https://doi.org/10.1109/ICSENS.2005.1597952.

    Article  Google Scholar 

  77. Y. Şahin, S. Öztürk, N. Kilinç, A. Kösemen, M. Erkovan, and Z. Z. Öztürk (2014). Electrical conduction and NO2 gas sensing properties of ZnO nanorods. Appl. Surf. Sci.. https://doi.org/10.1016/j.apsusc.2014.02.083.

    Article  Google Scholar 

  78. K. Sakai, S. Oyama, K. Noguchi, A. Fukuyama, T. Ikari, and T. Okada (2008). Optical properties of nanostructured ZnO crystal synthesized by pulsed-laser ablation. Physica E. https://doi.org/10.1016/j.physe.2007.09.006.

    Article  Google Scholar 

  79. G. Sangeetha, S. Rajeshwari, and R. Venckatesh (2011). Green synthesis of zinc oxide nanoparticles by aloe barbadensis miller leaf extract: structure and optical properties. Mater. Res. Bull.. https://doi.org/10.1016/j.materresbull.2011.07.046.

    Article  Google Scholar 

  80. J. Santhoshkumar, S. V. Kumar, and S. Rajeshkumar (2017). Synthesis of zinc oxide nanoparticles using plant leaf extract against urinary tract infection pathogen. Resource. https://doi.org/10.1016/j.reffit.2017.05.001.

    Article  Google Scholar 

  81. Y. Shang, M. Kamrul Hasan, G. J. Ahammed, M. Li, H. Yin, and J. Zhou (2019). Applications of nanotechnology in plant growth and crop protection: a review. Molecules. https://doi.org/10.3390/molecules24142558.

    Article  PubMed  PubMed Central  Google Scholar 

  82. T. R. Shojaei, M. A. M. Salleh, M. Tabatabaei, H. Mobli, M. Aghbashlo, S. A. Rashid, and T. Tan (2018). Applications of nanotechnology and carbon nanoparticles in agriculture. Synth. Technol. Appl. Carbon Nanomater.. https://doi.org/10.1016/B978-0-12-815757-2.00011-5.

    Article  Google Scholar 

  83. A. Singh, N. B. Singh, I. Hussain, H. Singh, V. Yadav, and S. C. Singh (2016). Green synthesis of nano zinc oxide and evaluation of its impact on germination and metabolic activity of Solanum lycopersicum. J. Biotechnol.. https://doi.org/10.1016/j.jbiotec.2016.07.010.

    Article  PubMed  Google Scholar 

  84. N. B. Singh, N. Amist, K. Yadav, D. Singh, J. K. Pandey, and S. C. Singh (2013). Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. J. Nanoeng. Nanomanuf.. https://doi.org/10.1166/jnan.2013.1156.

    Article  Google Scholar 

  85. S. C. Singh (2013). Zinc oxide nanostructures; synthesis, characterizations and device applications. J. Nanoeng. Nanomanuf.. https://doi.org/10.1166/jnan.2013.1147.

    Article  Google Scholar 

  86. R. Sinha, R. Karan, A. Sinha, and S. K. Khare (2011). Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Biores. Technol.. https://doi.org/10.1016/j.biortech.2010.07.117.

    Article  Google Scholar 

  87. A. Srivastava and D. P. Rao (2014). Enhancement of plant growth using multiwalled carbon nanotubes enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. Chem. Bull. 3, 5.

    Google Scholar 

  88. G. Srivastava, C. K. Das, A. Das, S. K. Singh, M. Roy, H. Kim, and M. Das (2014). Seed treatment with iron pyrite (FeS2) nanoparticles increases the production of spinach. RSC Adv.. https://doi.org/10.1039/c4ra06861k.

    Article  Google Scholar 

  89. M. Stan, A. Popa, D. Toloman, T. D. Silipas, and D. C. Vodnar (2016). Antibacterial and antioxidant activities of ZnO nanoparticles synthesized using extracts of Allium sativum, Rosmarinus officinalis and Ocimum basilicum. Acta Metallurgica Sinica (English Letters).. https://doi.org/10.1007/s40195-016-0380-7.

    Article  Google Scholar 

  90. P. K. Stoimenov, R. L. Klinger, G. L. Marchin, and K. J. Klabunde (2002). Metal oxide nanoparticles as bactericidal agents. Langmuir. https://doi.org/10.1021/la0202374.

    Article  Google Scholar 

  91. T. V. Surendra, S. M. Roopan, N. A. Al-Dhabi, M. V. Arasu, G. Sarkar, and K. Suthindhiran (2016). Vegetable peel waste for the production of ZnO nanoparticles and its toxicological efficiency, antifungal, hemolytic, and antibacterial activities. Nanoscale Res. Lett.. https://doi.org/10.1186/s11671-016-1750-9.

    Article  PubMed  PubMed Central  Google Scholar 

  92. J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, and S. I. Hong (2018). Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Adv. Nat. Sci.. https://doi.org/10.1088/2043-6254/aaa6f1.

    Article  Google Scholar 

  93. S. Verma and R. S. Dubey (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci.. https://doi.org/10.1016/S0168-9452(03)00022-0.

    Article  Google Scholar 

  94. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, and R. H. Balasubramanya (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater. Lett.. https://doi.org/10.1016/j.matlet.2006.07.042.

    Article  Google Scholar 

  95. T. Vij and Y. Prashar (2015). A review on medicinal properties of Carica papaya Linn. Asian Pac. J. Trop. Dis.. https://doi.org/10.1016/S2222-1808(14)60617-4.

    Article  Google Scholar 

  96. R. Vijayalakshmi and V. Rajendran (2012). Synthesis and characterization of nano-TiO2 via different methods. Scholar Res. Library. https://doi.org/10.11648/j.nano.20140201.11.

    Article  Google Scholar 

  97. E. R. Waclawik, J. Chang, A. Ponzoni, I. Concina, D. Zappa, E. Comini, and G. Sberveglieri (2012). Functionalised zinc oxide nanowire gas sensors: enhanced NO2 gas sensor response by chemical modification of nanowire surfaces. Beilstein J. Nanotechnol.. https://doi.org/10.3762/bjnano.3.43.

    Article  PubMed  PubMed Central  Google Scholar 

  98. H. Wang, R. L. Wick, and B. Xing (2009). Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans. Environ. Pollut.. https://doi.org/10.1016/j.envpol.2008.11.004.

    Article  PubMed  Google Scholar 

  99. J. X. Wang, X. W. Sun, Y. Yang, and C. M. L. Wu (2009). N-P transition sensing behaviors of ZnO nanotubes exposed to NO2 gas. Nanotechnology. https://doi.org/10.1088/0957-4484/20/46/465501.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Y. L. Wang, H. S. Kim, D. P. Norton, S. J. Pearton, and F. Ren (2008). Dielectric passivation effects on ZnO light emitting diodes. Appl. Phys. Lett. 10, (1063/1), 2898709.

    Google Scholar 

  101. Z. L. Wang (2007). Piezoelectric nanostructures: from growth phenomena to electric nanogenerators. MRS Bull.. https://doi.org/10.1557/mrs2007.42.

    Article  Google Scholar 

  102. A. Wei, X. W. Sun, J. X. Wang, Y. Lei, X. P. Cai, C. M. Li, and W. Huang (2006). Enzymatic glucose biosensor based on ZnO nanorod array grown by hydrothermal decomposition. Appl. Phys. Lett. 10, (1063/1), 2356307.

    Google Scholar 

  103. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, and D. Hui (2013). Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir. https://doi.org/10.1021/la400378t.

    Article  PubMed  PubMed Central  Google Scholar 

  104. L. Yang and D. J. Watts (2005). Particle surface characteristics may play an important role in phytotoxicity of alumina nanoparticles. Toxicol. Lett.. https://doi.org/10.1016/j.toxlet.2005.03.003.

    Article  PubMed  Google Scholar 

  105. Zarrindokht Emami-Karvani (2012). Antibacterial activity of ZnO nanoparticle on Gram-positive and Gram-negative bacteria. Afr. J. Microbiol. Res.. https://doi.org/10.5897/ajmr10.159.

    Article  Google Scholar 

  106. L. Zhang, Y. Jiang, Y. Ding, M. Povey, and D. York (2007). Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res.. https://doi.org/10.1007/s11051-006-9150-1.

    Article  Google Scholar 

  107. R. Zhang, H. Zhang, C. Tu, X. Hu, L. Li, Y. Luo, and P. Christie (2015). Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L. during germination. Environ. Sci. Pollut. Res.. https://doi.org/10.1007/s11356-015-4325-x.

    Article  Google Scholar 

  108. T. Zhang, H. Sun, Z. Lv, L. Cui, H. Mao, and P. M. Kopittke (2018). Using synchrotron-based approaches to examine the foliar application of ZnSO4 and ZnO nanoparticles for field-grown winter wheat. J. Agric. Food Chem.. https://doi.org/10.1021/acs.jafc.7b04153.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Y. Zhang, K. Yu, S. Ouyang, L. Luo, H. Hu, Q. Zhang, and Z. Zhu (2005). Detection of humidity based on quartz crystal microbalance coated with ZnO nanostructure films. Physica B. https://doi.org/10.1016/j.physb.2005.07.001.

    Article  Google Scholar 

  110. J. Zheng, K. Nagashima, D. Parmiter, J. de la Cruz, and A. K. Patri (2011). SEM X-ray microanalysis of nanoparticles present in tissue or cultured cell thin sections. Methods Mol. Biol.. https://doi.org/10.1007/978-1-60327-198-1_9.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Y. Zheng, L. Fu, F. Han, A. Wang, W. Cai, J. Yu, and F. Peng (2015). Green biosynthesis and characterization of zinc oxide nanoparticles using Corymbia citriodora leaf extract and their photocatalytic activity. Green Chem. Lett. Rev.. https://doi.org/10.1080/17518253.2015.1075069.

    Article  Google Scholar 

  112. Y. Z. Zheng, X. Tao, L. X. Wang, H. Xu, Q. Hou, W. L. Zhou, and J. F. Chen (2010). Novel ZnO-based film with double light-scattering layers as photoelectrodes for enhanced efficiency in dye-sensitized solar cells. Chem. Mater.. https://doi.org/10.1021/cm901780z.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Vice-Chancellor, Shoolini University, Solan, for providing infrastructure support to conduct the research work. Authors are highly thankful to the School of Bioengineering and Food Technology, Shoolini University, Solan, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Chauhan.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interests.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P. et al. Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications. J Clust Sci 33, 603–617 (2022). https://doi.org/10.1007/s10876-020-01962-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01962-w

Keywords

Navigation