Skip to main content
Log in

Sixty-Year Saga (1952–2013) of the Solid-State Structure of Triiron Dodecacarbonyl

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This article presents the personal saga of one of the authors (LFD) in the determination of the solid-state structure of Fe3(CO)12. We also present the results of our recent determination of its solid-state structure at low temperature (100 K), in which we have used a modern area-detector diffractometer in order to examine more precisely its temperature-dependent structural variations reported by Braga et al. in 1994 from a point-detector diffractometer. These investigations provide a striking illustration of the remarkable advances over the last six decades in both computational hardware and software packages as well as the recent improvements in hardware data-collection instrumentation that have given rise to X-ray crystallography now being the most powerful (and in most cases the only unambiguous) physical method for elucidating the static structures of complex metal clusters. Other experimental measurements and resulting speculations concerning the dynamic/fluxional behavior of Fe3(CO)12 and closely related analogues in the solid state and in solution are briefly mentioned, as are recent theoretical analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Quotation from Professor John M. Thomas in Surface Science and Catalysis, ed. by A. F. Carley, P. R. Davies, G. J. Hutchings, M. S. Spencer (Kluwer/Plenum Academic Publ. 2002).

  2. R. Desiderato Jr and G. R. Dobson (1982). J. Chem. Educ. 59, 752.

    Article  CAS  Google Scholar 

  3. J. Dewar and H. O. Jones (1907). Proc. Roy. Soc. (London) 79A, 66.

    Article  Google Scholar 

  4. H. G. Cutforth and P. W. Selwood (1943). J. Am. Chem. Soc. 65, 2414.

    Article  CAS  Google Scholar 

  5. W. Hieber and E. Becker (1930). Chem. Ber. 63B, 1405.

    Article  CAS  Google Scholar 

  6. R. K. Sheline (1951). J. Am. Chem. Soc. 73, 1615.

    Article  CAS  Google Scholar 

  7. O. S. Mills (1957). Chem. Ind. (London) No. 3, 73.

  8. L. F. Dahl and R. E. Rundle (1957). J. Chem. Phys. 26, 1751.

    Article  CAS  Google Scholar 

  9. L. F. Dahl and R. E. Rundle (1957). J. Chem. Phys. 27, 323.

    Article  CAS  Google Scholar 

  10. L. F. Dahl, E. Ishishi, and R. E. Rundle (1957). J. Chem. Phys. 26, 1750.

    Article  CAS  Google Scholar 

  11. L. F. Dahl and R. E. Rundle (1963). Acta Crystallogr. 16, 419.

    Article  CAS  Google Scholar 

  12. M. R. Churchill, K. N. Amoh, and H. J. Wasserman (1981). Inorg. Chem. 20, 1609.

    Article  CAS  Google Scholar 

  13. H. M. Powell and R. V. G. Ewens (1939). J. Chem. Soc. 286.

  14. F. A. Cotton and J. M. Troup (1974). J. C. S. Dalton Trans. 800.

  15. E. R. Corey and L. F. Dahl (1961). J. Am. Chem. Soc. 83, 2203.

    Article  CAS  Google Scholar 

  16. E. R. Corey and L. F. Dahl (1962). Inorg. Chem. 1, 521.

    Article  CAS  Google Scholar 

  17. M. R. Churchill and B. G. De Boer (1977). Inorg. Chem. 16, 878.

    Article  CAS  Google Scholar 

  18. E. R. Corey, L. F. Dahl, and W. Beck (1963). J. Am. Chem. Soc. 85, 1202.

    Article  CAS  Google Scholar 

  19. E. H. Braye, L. F. Dahl, W. Hübel, and D. L. Wampler (1962). J. Am. Chem. Soc. 84, 4633.

    Article  CAS  Google Scholar 

  20. M. Kalvins, U. Zahn, P. Kienle, and H. Eicher (1962). Z. Naturforsch. 17a, 494.

    CAS  Google Scholar 

  21. R. H. Herber, W. R. Kingston, and G. K. Wertheim (1963). Inorg. Chem. 2, 153.

    Article  CAS  Google Scholar 

  22. E. Fluck, W. Kerler, and W. Neuwirth (1963). Angew. Chem. Int. Ed. 2, 277.

    Article  Google Scholar 

  23. G. R. Dobson and R. K. Sheline (1963). Inorg. Chem. 2, 1313.

    Article  CAS  Google Scholar 

  24. L. F. Dahl and J. F. Blount (1965). Inorg. Chem. 4, 1373.

    Article  CAS  Google Scholar 

  25. N. E. Erickson (1964). Ph.D. Thesis. University of Washington, Seattle.

  26. N. E. Erickson and A. W. Fairhall (1965). Inorg. Chem. 4, 1320.

    Article  CAS  Google Scholar 

  27. D. J. Dahm and R. A. Jacobson (1966). Chem. Commun. 496.

  28. D. J. Dahm and R. A. Jacobson (1968). J. Am. Chem. Soc. 90, 5106.

    Article  CAS  Google Scholar 

  29. R. J. Angelici and E. E. Siefert (1966). Inorg. Chem. 5, 1457.

    Article  CAS  Google Scholar 

  30. W. R. Busing, K. O. Martin, and H. A. Levy (1962). ORFLS, A Fortran Crystallographic Least-Squares Program, Oak Ridge National Laboratory, Union Carbide Corporation. Oak Ridge, Tennessee.

  31. C. H. Wei and L. F. Dahl (1966). J. Am. Chem. Soc. 88, 1821.

    Article  CAS  Google Scholar 

  32. C. H. Wei and L. F. Dahl (1969). J. Am. Chem. Soc. 91, 1351.

    Article  CAS  Google Scholar 

  33. L. F. Dahl (Sept. 1967). Topology in Transition Metal Cluster Systems. Abstracts of Papers. (Inorg. Chem. 17), 154th National Meeting of Am. Chem. Society, Chicago, Illinois.

  34. F. A. Cotton and J. M. Troup (1974). J. Am. Chem. Soc. 96, 4155.

    Article  CAS  Google Scholar 

  35. C. G. Benson, G. J. Long, J. W. Kolis, and D. F. Shriver (1985). J. Am. Chem. Soc. 107, 5297.

    Article  CAS  Google Scholar 

  36. J. W. Kolis, E. M. Holt, M. Drezdzon, K. H. Whitmire, and D. F. Shriver (1982). J. Am. Chem. Soc. 104, 6134.

    Article  CAS  Google Scholar 

  37. J. W. Kolis, E. M. Holt, J. A. Hriljac, and D. F. Shriver (1984). Organometallics 3, 496.

    Article  CAS  Google Scholar 

  38. F. Grandjean, G. J. Long, C. G. Benson, and U. Russo (1988). Inorg. Chem. 27, 1524.

    Article  CAS  Google Scholar 

  39. F. Y.-K. Lo, G. Longoni, P. Chini, L. D. Lower, and L. F. Dahl (1980). J. Am. Chem. Soc. 102, 7691.

    Article  CAS  Google Scholar 

  40. D. F. Shriver, D. Lehman, and D. Strope (1975). J. Am. Chem. Soc. 97, 1594.

    Article  CAS  Google Scholar 

  41. F. Ragaini, J.-S. Song, D. L. Ramage, G. L. Geoffroy, G. A. P. Yap, and A. L. Rheingold (1995). Organometallics 14, 387.

    Article  CAS  Google Scholar 

  42. J. R. Morton, K. F. Preston, J.-P. Charland, and P. J. Krusic (1990). J. Mol. Struct. 223, 115.

    Article  CAS  Google Scholar 

  43. P. J. Krusic, J. S. Filippo Jr, B. Hutchinson, R. L. Hance, and L. M. Daniels (1981). J. Am. Chem. Soc. 103, 2129.

    Article  CAS  Google Scholar 

  44. P. J. Krusic (1981). J. Am. Chem. Soc. 103, 2131.

    Article  CAS  Google Scholar 

  45. J. R. Morton, K. F. Preston, Y. L. Page, and P. J. Krusic (1989). J. Chem. Soc., Faraday Trans. I. 85, 4019.

    Article  CAS  Google Scholar 

  46. D. Braga, F. Grepioni, L. J. Farrugia, and B. F. G. Johnson (1994). J. Chem. Soc., Dalton Trans. 2911.

  47. J. Knight and M. J. Mays (1970). Chem. Commun. 1006.

  48. F. A. Cotton and D. L. Hunter (1974). Inorg. Chim. Acta 11, L9.

    Article  CAS  Google Scholar 

  49. M. Poliakoff and J. J. Turner (1970). Chem. Commun. 1008.

  50. N. Binsted, J. Evans, G. N. Greaves, and R. J. Price (1987). J. Chem. Soc., Chem. Commun. 1330.

  51. B. F. G. Johnson (1976). J. Chem. Soc., Chem. Commun. 703.

  52. B. E. Mann (1997). J. Chem. Soc., Dalton Trans. 1457.

  53. B. F. G. Johnson (1997). J. Chem. Soc., Dalton Trans. 1473.

  54. B. F. G. Johnson and A. Rodgers, in “The Chemistry of Metal Cluster Complexes”, D. F. Shriver, H. D. Kaesz, R. D. Adams, eds., Chpt. 6, p. 303–327.

  55. D. Braga, C. E. Anson, A. Bott, B. F. G. Johnson, and E. Marseglia (1990). J. Chem. Soc., Dalton Trans. 3517.

  56. J. W. Gleeson and R. W. Vaughan (1983). J. Chem. Phys. 78, 5384.

    Article  CAS  Google Scholar 

  57. H. Dorn, B. E. Hanson, and E. Motell (1981). Inorg. Chim. Acta 54, L71.

    Article  CAS  Google Scholar 

  58. B. E. Hanson, E. C. Lisic, J. T. Petty, and G. A. Iannaconne (1986). Inorg. Chem. 25, 4062.

    Article  CAS  Google Scholar 

  59. T. H. Walter, L. Reven, and E. Oldfield (1989). J. Phys. Chem. 93, 1320.

    Article  CAS  Google Scholar 

  60. M. R. Churchill and J. C. Fettinger (1990). Organometallics 9, 446.

    Article  CAS  Google Scholar 

  61. D. Braga, F. Grepioni, E. Tedesco, M. J. Calhorda, and P. E. M. Lopes (1995). J. Chem. Soc. Dalton Trans. 3297.

  62. A. Rosa and E. J. Baerends (1991). New J. Chem. 15, 815.

    CAS  Google Scholar 

  63. E. Hunstock, C. Mealli, M. J. Calhorda, and J. Reinhold (1999). Inorg. Chem. 38, 5053.

    Article  CAS  Google Scholar 

  64. J. H. Jang, J. G. Lee, H. Lee, Y. Xie, and H. F. Schaefer III (1998). J. Phys. Chem. A. 102, 5298.

    Article  CAS  Google Scholar 

  65. H. Chevreau, C. Martinsky, A. Sevin, C. Minot, and B. Silvi (2003). New J. Chem. 27, 1049.

    Article  CAS  Google Scholar 

  66. H. Wang, Y. Xie, R. B. King, and H. F. Schaefer III (2006). J. Am. Chem. Soc. 128, 11376.

    Article  CAS  Google Scholar 

  67. E. G. Mednikov and L. F. Dahl (2010). Phil. Trans. R. Soc. A 368, 1301.

    Article  CAS  Google Scholar 

  68. G. M. Sheldrick (2000). SHELXTL (version 6.10) program library, Bruker Analytical X-Ray Systems, Madison, WI.

  69. Bruker-AXS (2009). Apex2 v2010.7-0, Bruker-AXS Inc., Madison, Wisconsin, USA.

Download references

Acknowledgments

We are pleased to acknowledge partial financial support of this research from the UW-Madison Graduate School and Chemistry Department. We are grateful to Professors John Berry (Chem. Dept.; UW-Madison) and June Dahl (Dept. of Neuroscience; UW School of Medicine & Public Health) for helpful suggestions and to Professor Boon Teo (Chem. Dept.; Univ. of Illinois at Chicago) for all of his support. LFD is especially happy to acknowledge the overall presence of a normally unrecognized collaborator—namely, the Goddess Fortuna, who has played an extremely important role during his entire academic career in Transition Metal Cluster Chemistry. His advice, especially to former co-workers, is the following: “whenever your research is going particularly well (i.e., corresponding to the presence of Fortuna in the laboratory), you should work hard both day and night; however, when research is not going well (i.e., when she is absent from the lab), the best possible solution is to take a short vacation with the hope that she will then return to the lab upon your resumption of work.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence F. Dahl.

Additional information

Dedicated to the memory of John Corbett (Iowa State University).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campana, C.F., Guzei, I.A., Mednikov, E.G. et al. Sixty-Year Saga (1952–2013) of the Solid-State Structure of Triiron Dodecacarbonyl. J Clust Sci 25, 205–224 (2014). https://doi.org/10.1007/s10876-013-0667-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0667-z

Keywords

Navigation