Skip to main content

Advertisement

Log in

Trafficking of CAR-Engineered Human T Cells Following Regional or Systemic Adoptive Transfer in SCID Beige Mice

  • Published:
Journal of Clinical Immunology Aims and scope Submit manuscript

Abstract

Adoptive immunotherapy using chimeric antigen receptor-engrafted T cells is a promising emerging therapy for cancer. Prior to clinical testing, it is mandatory to evaluate human therapeutic cell products in meaningful in vivo pre-clinical models. Here, we describe the use of fused single-photon emission CT–CT imaging to monitor real-time migration of chimeric antigen receptor-engineered T cells in immune compromised (SCID Beige) mice. Following intravenous administration, human T cells migrate in a highly similar manner to that reported in man, but penetrate poorly into established tumors. By contrast, when delivered via intraperitoneal or subcutaneous routes, T cells remain at the site of inoculation with minimal systemic absorption—irrespective of the presence or absence of tumor. Together, these data support the validity of pre-clinical testing of human T-cell immunotherapy in SCID Beige mice. In light of their established efficacy, regional administration of engineered human T cells represents an attractive therapeutic option to minimize toxicity in the treatment of selected malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sprangers B, Van Wijmeersch B, Fevery S, Waer M, Billiau AD. Experimental and clinical approaches for optimization of the graft-versus-leukemia effect. Nat Clin Pract Oncol. 2007;4:404–14.

    Article  PubMed  Google Scholar 

  2. Rosenberg SA, Dudley ME. Adoptive cell therapy for the treatment of patients with metastatic melanoma. Curr Opin Immunol. 2009;21:233–40.

    Article  PubMed  CAS  Google Scholar 

  3. Schmitt TM, Ragnarsson GB, Greenberg PD. T cell receptor gene therapy for cancer. Hum Gene Ther. 2009;20:1240–8.

    Article  PubMed  CAS  Google Scholar 

  4. Sadelain M. T-cell engineering for cancer immunotherapy. Cancer J. 2009;15:451–5.

    Article  PubMed  CAS  Google Scholar 

  5. Davies DM, Maher J. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T-cells. Arch Immunol Ther Exp. 2010;58:165–78.

    Article  CAS  Google Scholar 

  6. Varela-Rohena A, Molloy PE, Dunn SM, Li Y, Suhoski MM, Carroll RG, et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med. 2008;14:1390–5.

    Article  PubMed  CAS  Google Scholar 

  7. Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Res. 2006;66:5527–36.

    Article  PubMed  CAS  Google Scholar 

  8. Maher J, Brentjens RJ, Gunset G, Rivière I, Sadelain M. Human T-lymphocyte cytotoxicity and proliferation directed by a single chimeric TCRzeta /CD28 receptor. Nat Biotechnol. 2002;20:70–5.

    Article  PubMed  CAS  Google Scholar 

  9. Pulè MA, Straathof KC, Dotti G, Heslop HE, Rooney CM, Brenner MK. A chimeric T cell antigen receptor that augments cytokine release and supports clonal expansion of primary human T cells. Mol Ther. 2005;12:933–41.

    Article  PubMed  Google Scholar 

  10. Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric receptors containing CD137 signal transduction domains mediate enhanced survival of T cells and increased antileukemic efficacy in vivo. Mol Ther. 2009;17:1453–64.

    Article  PubMed  CAS  Google Scholar 

  11. Murphy WJ, Tian ZG, Asai O, Funakoshi S, Rotter P, Henry M, et al. Chemokines and T lymphocyte activation: II. Facilitation of human T cell trafficking in severe combined immunodeficiency mice. J Immunol. 1996;156:2104–11.

    PubMed  CAS  Google Scholar 

  12. Taub DD, Tsarfaty G, Lloyd AR, Durum SK, Longo DL, Murphy WJ. Growth hormone promotes human T cell adhesion and migration to both human and murine matrix proteins in vitro and directly promotes xenogeneic engraftment. J Clin Invest. 1994;94:293–300.

    Article  PubMed  CAS  Google Scholar 

  13. Nervi B, Rettig MP, Ritchey JK, Wang HL, Bauer G, Walker J, et al. Factors affecting human T cell engraftment, trafficking, and associated xenogeneic graft-vs-host disease in NOD/SCID beta2mnull mice. Exp Hematol. 2007;35:1823–38.

    Article  PubMed  CAS  Google Scholar 

  14. Santos EB, Yeh R, Lee J, Nikhamin Y, Punzalan B, Punzalan B, et al. Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med. 2009;15:338–44.

    Article  PubMed  CAS  Google Scholar 

  15. Dobrenkov K, Olszewska M, Likar Y, Shenker L, Gunset G, Cai S, et al. Monitoring the efficacy of adoptively transferred prostate cancer-targeted human T lymphocytes with PET and bioluminescence imaging. J Nucl Med. 2008;49:1162–70.

    Article  PubMed  Google Scholar 

  16. Brown CE, Vishwanath RP, Aguilar B, Starr R, Najbauer J, Aboody KS, et al. Tumor-derived chemokine MCP-1/CCL2 is sufficient for mediating tumor tropism of adoptively transferred T cells. J Immunol. 2007;179:3332–41.

    PubMed  CAS  Google Scholar 

  17. Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of human T cells to tumor-associated MUC1: the evolution of a chimeric antigen receptor. J Immunol. 2008;180:4901–9.

    PubMed  CAS  Google Scholar 

  18. Davies DM, Wilkie S, Foster JM, Delinassios G, Chiapero-Stanke L, Burbridge S, et al. Targeting the extended Erbb receptor family using chimeric antigen receptor (CAR)-grafted T-cells as a treatment for head and neck cancer. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, AACR, Washington, DC, USA, 17–21 April 2010. Abstract no. 1932.

  19. Pittet MJ, Grimm J, Berger CR, Tamura T, Wojtkiewicz G, Nahrendorf M, et al. In vivo imaging of T cell delivery to tumors after adoptive transfer therapy. Proc Natl Acad Sci USA. 2007;104:12457–61.

    Article  PubMed  CAS  Google Scholar 

  20. Wingens M, Walma T, van Ingen H, Stortelers C, van Leeuwen JE, van Zoelen EJ, et al. Structural analysis of an epidermal growth factor/transforming growth factor-alpha chimera with unique ErbB binding specificity. J Biol Chem. 2003;278:39114–23.

    Article  PubMed  CAS  Google Scholar 

  21. Wilkie S, Burbridge SE, Chiapero-Stanke L, Pereira AC, Cleary S, van der Stegen SJ, et al. Selective expansion of chimeric antigen receptor-targeted T-cells with potent effector function using interleukin-4. J Biol Chem. 2010;285:25538–44.

    Article  PubMed  CAS  Google Scholar 

  22. Read EJ, Keenan AM, Carter CS, Yolles PS, Davey RJ. In vivo traffic of indium-111-oxine labelled human lymphocytes collected by automated apheresis. J Nucl Med. 1990;31:999–1006.

    PubMed  CAS  Google Scholar 

  23. Wagstaff J, Gibson C, Thatcher N, Ford WL, Sharma H, Crowther D. Human lymphocyte traffic assessed by indium 111oxine labelling: clinical observations. Clin Exp Immunol. 1981;43:443–9.

    PubMed  CAS  Google Scholar 

  24. Fisher B, Packard BS, Read EJ, Carrasquillo JA, Carter CS, Topalian SL, et al. Tumor localization of adoptively transferred indium-111 labelled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol. 1989;7:250–61.

    PubMed  CAS  Google Scholar 

  25. Smith ME, Ford WL. The recirculating lymphocyte pool of the rat: a systematic description of the migratory behaviour of recirculating lymphocytes. Immunology. 1983;49:83–94.

    PubMed  CAS  Google Scholar 

  26. Looney MR, Thornton EE, Sen D, Lamm WJ, Glenny RW, Krummel MF. Stabilized imaging of immune surveillance in the mouse lung. Nat Methods. 2011;8:91–6.

    Article  PubMed  CAS  Google Scholar 

  27. Hamann A, Klugewitz K, Austrup F, Jablonski-Westrich D. Activation induces rapid and profound alterations in the trafficking of T cells. Eur J Immunol. 2000;30:3207–18.

    Article  PubMed  CAS  Google Scholar 

  28. Staunton DE, Dustin ML, Erickson HP, Springer TA. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990;61:243–54.

    Article  PubMed  CAS  Google Scholar 

  29. Aird WC. Phenotypic heterogeneity of the Endothelium. 1. Structure, Function and Mechanisms. Circ Res. 2007;100:158–73.

    Article  PubMed  CAS  Google Scholar 

  30. Morgan RA, Yang JC, Kitano M, Dudley ME, Laurencot CM, Rosenberg SA. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18:843–51.

    Article  PubMed  CAS  Google Scholar 

  31. Heslop HE. Safer CARs. Mol Ther. 2010;18:661–2.

    Article  PubMed  CAS  Google Scholar 

  32. Lamers CH, Sleijfer S, Vulto AG, Kruit WH, Kliffen M, Debets R, et al. Treatment of metastatic renal cell carcinoma with autologous T-lymphocytes genetically retargeted against carbonic anhydrase IX: first clinical experience. J Clin Oncol. 2006;24:e20–2.

    Article  PubMed  Google Scholar 

  33. Bernhard H, Neudorfer J, Gebhard K, Conrad H, Hermann C, Nährig J, et al. Adoptive transfer of autologous, HER2-specific, cytotoxic T lymphocytes for the treatment of HER2-overexpressing breast cancer. Cancer Immunol Immunother. 2008;57:271–80.

    Article  PubMed  Google Scholar 

  34. Koya RC, Mok S, Comin-Anduix B, Chodon T, Radu CG, Nishimura MI, et al. Kinetic phases of distribution and tumor targeting by T cell receptor engineered lymphocytes inducing robust antitumor responses. Proc Natl Acad Sci USA. 2010;107:14286–91.

    Article  PubMed  CAS  Google Scholar 

  35. Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of chronic lymphocytic leukemia with genetically targeted autologous T cells: case report of an unforeseen adverse event in a phase I clinical trial. Mol Ther. 2010;18:666–8.

    Article  PubMed  CAS  Google Scholar 

  36. Crispe IN, Dao T, Klugewitz K, Mehal WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? Immunol Rev. 2000;174:47–62.

    Article  PubMed  CAS  Google Scholar 

  37. Kershaw MH, Wang G, Westwood JA, Pachynski RK, Tiffany HL, Marincola FM, et al. Redirecting migration of T cells to chemokine secreted from tumors by genetic modification with CXCR2. Hum Gene Ther. 2002;13:1971–80.

    Article  PubMed  CAS  Google Scholar 

  38. Lo AS, Taylor JR, Farzaneh F, Kemeny DM, Dibb NJ, Maher J. Harnessing the tumour-derived cytokine, CSF-1, to co-stimulate T-cell growth and activation. Mol Immunol. 2008;45:1276–87.

    Article  PubMed  CAS  Google Scholar 

  39. Schliemann C, Palumbo A, Zuberbühler K, Villa A, Kaspar M, Trachsel E, et al. Complete eradication of human B-cell lymphoma xenografts using rituximab in combination with the immunocytokine L19-IL2. Blood. 2009;113:2275–83.

    Article  PubMed  CAS  Google Scholar 

  40. Cappuccini F, Lucci 3rd JA, Dett CA, Gatanaga M, Ininns EK, Gatanaga T, et al. Trafficking of syngeneic murine lymphokine activated killer T cells following intraperitoneal administration in normal and tumor bearing mice. Gynecol Oncol. 1992;46:163–9.

    Article  PubMed  CAS  Google Scholar 

  41. Markman M. Intraperitoneal chemotherapy as primary treatment of advanced ovarian cancer: efficacy, toxicity, and future directions. Rev Recent Clin Trials. 2007;2:169–73.

    Article  PubMed  CAS  Google Scholar 

  42. Van Elssen CH, Frings PW, Bot FJ, Van de Vijver KK, Huls MB, Meek B, et al. Expression of aberrantly glycosylated Mucin-1 in ovarian cancer. Histopathology. 2010;57:597–606.

    Article  PubMed  Google Scholar 

  43. Simpson BJ, Phillips HA, Lessells AM, Langdon SP, Miller WR. c-erbB growth-factor-receptor proteins in ovarian tumours. Int J Cancer. 1995;64:202–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr Joy Burchell and Prof Joyce Taylor-Papadimitriou for provision of several highly useful MUC1-related reagents. This work was supported by the US Department of Defense (Fiscal Year 2008 Ovarian Cancer Research Program, Translational Research Partnership Award) under contract W81XWH-09-1-0096; Breast Cancer Campaign (project grant 2006NovPR18), Association for International Cancer Research (project grant 08-0419), Guy’s and St Thomas’ Charity, Experimental Cancer Medicine Centre (King’s College London) and from Guy’s and the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy’s & St Thomas’ NHS Foundation Trust in partnership with King’s College London and King’s College Hospital NHS Foundation Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Maher.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parente-Pereira, A.C., Burnet, J., Ellison, D. et al. Trafficking of CAR-Engineered Human T Cells Following Regional or Systemic Adoptive Transfer in SCID Beige Mice. J Clin Immunol 31, 710–718 (2011). https://doi.org/10.1007/s10875-011-9532-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10875-011-9532-8

Keywords

Navigation