Skip to main content
Log in

Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology

  • Article
  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in ϕ/ψ/χ1 torsion angles and sequence similarity to the query triplet of interest. The database contains 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C′ chemical shifts for 200 proteins for which a high resolution X-ray (≤2.4 Å) structure is available. The relative importance of the weighting factors for the ϕ/ψ/χ1 angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for 15N, 1HN, 1Hα, 13Cα, 13Cβ and 13C′, respectively, including outliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ando I, Saito H, Tabeta R, Shoji A, Ozaki T (1984) Conformation-dependent carbon-13 NMR chemical shifts of poly(L-Alanine) in the solid state: FPT INDO calculation of N-acetyl-N′-methyl-L-Alanine amide as a model compound of poly(l-alanine). Macromolecules 17:457–461

    Article  Google Scholar 

  • Asakawa N, Kuroki S, Kurosu H, Ando I, Shoji A, Ozaki T (1992) Hydrogen-bonding effect on 13C NMR chemical shifts of L-Alanine residue carbonyl carbons of peptides in the solid state. J Am Chem Soc 114:3261–3265

    Article  Google Scholar 

  • Avbelj F, Kocjan D, Baldwin RL (2004) Protein chemical shifts arising from α-helices and β-sheets depend on solvent exposure. Proc Natl Acad Sci USA 101:17394–17397

    Article  ADS  Google Scholar 

  • Bartels C, Billeter M, Güntert P, Wüthrich K (1996) Automated sequence-specific NMR assignment of homologous proteins using the program GARANT. J Biomol NMR 7:207–213

    Article  Google Scholar 

  • Beger RD, Bolton PH (1997) Protein ϕ and ψ dihedral restraints determined from multidimensional hypersurface correlations of backbone chemical shifts and their use in the determination of protein tertiary structures. J Biomol NMR 10:129–142

    Article  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucl Acids Res 28:235–242

    Article  Google Scholar 

  • Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6:341

    Article  Google Scholar 

  • Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  Google Scholar 

  • de Dios AC, Pearson JG, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260:1491–1496

    Article  ADS  Google Scholar 

  • Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293

    Article  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins: Struct Funct Genet 23:566–579

    Article  Google Scholar 

  • Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    Article  Google Scholar 

  • Gardner KH, Rosen MK, Kay LE (1997) Global folds of highly deuterated, methyl-protonated proteins by multidimensional NMR. Biochemistry 36:1389–1401

    Article  Google Scholar 

  • Glushka J, Lee M, Coffin S, Cowburn D (1989) 15N chemical shifts of backbone amides in bovine pancreatic trypsin inhibitor and apamin. J Am Chem Soc 111:7716–7722

    Article  Google Scholar 

  • Gronwald W, Boyko RF, Sönnichsen FD, Wishart DS, Sykes BD (1997) ORB, a homology-based program for the prediction of protein NMR chemical shifts. J Biomol NMR 10:165–179

    Article  Google Scholar 

  • Haigh CW, Mallion RB (1979) Ring current theories in Nuclear Magnetic Resonance. Progr NMR Spectrosc 13:303–344

    Article  Google Scholar 

  • Herranz J, González C, Rico M, Nieto JL, Santoro J, Jiménez MA, Bruix M, Neira JL, Blanco FJ (1992) Peptide group chemical shift computation. Magn Reson Chem 30:1012–1018

    Article  Google Scholar 

  • Iwadate M, Asakura T, Williamson MP (1999) Cα and Cβ carbon-13 chemical shifts in proteins from an empirical database. J Biomol NMR 13:199–211

    Article  Google Scholar 

  • Jurgen FD, Aart JN, Wim V, Jundong L, Alexandre MJJB, Robert K, John LM, Eldon LU (2005) BioMagResBank databases DOCR and FRED containing converted and filtered sets of experimental NMR restraints and coordinates from over 500 protein PDB structures. J Biomol NMR 32:1–12

    Article  Google Scholar 

  • Kabsch W, Sander C (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22:2577–2637

    Article  Google Scholar 

  • Kontaxis G, Delaglio F, Bax A (2005) Molecular fragment replacement approach to protein structure determination by chemical shift and dipolar homology database mining. Methods Enzymol 394:42–78

    Article  Google Scholar 

  • Laskowski RA, Rullmann JAC, MacArthur MW, Kaptein R, Thornton JM (1996) AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  Google Scholar 

  • Le HB, Oldfield E (1994) Correlation between 15N NMR chemical shifts in proteins and secondary structure. J Biomol NMR 4:341–348

    Article  Google Scholar 

  • Le HB, Oldfield E (1996) Ab initio studies of amide-N-15 chemical shifts in dipeptides: applications to protein NMR spectroscopy. J Phys Chem 100:16423–16428

    Article  Google Scholar 

  • Lee B, Richards FM (1971) The interpretation of protein structures: Estimation of static accessibility. J Mol Biol 55:379–380

    Article  Google Scholar 

  • Markley JL, Bax A, Arata Y, Hilbers CW, Kaptein R, Sykes BD, Wright PE, Wüthrich K (1998) Recommendations for the presentation of NMR structures of proteins and nucleic acids—IUPAC-IUBMB-IUPAB Inter-Union Task Group on the standardization of data bases of protein and nucleic acid structures determined by NMR spectroscopy. J Biomol NMR 12:1–23

    Article  Google Scholar 

  • Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26:25–37

    Article  Google Scholar 

  • Moseley HNB, Sahota G, Montelione GT (2004) Assignment validation software suite for the evaluation and presentation of protein resonance assignment data. J Biomol NMR 28:341–355

    Article  Google Scholar 

  • Neal S, Nip AM, Zhang HY, Wishart DS (2003) Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts. J Biomol NMR 26:215–240

    Article  Google Scholar 

  • Ösapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113:9436–9444

    Article  Google Scholar 

  • Ösapay K, Case DA (1994) Analysis of proton chemical shifts in regular secondary structure of proteins. J Biomol NMR 4:215–230

    Article  Google Scholar 

  • Pardi A, Wagner G, Wüthrich K (1983) Protein conformation and proton NMR chemical shifts. Eur J Biochem 137:445–454

    Article  Google Scholar 

  • Pastore A, Saudek V (1990) The relationship between chemical shift and secondary structure in proteins. J Magn Reson 90:165–176

    Google Scholar 

  • Redfield C, Dobson CM (1990) Proton NMR studies of human lysozyme: spectral assignment and comparison with hen lysozyme. Biochemistry 29:7201–7214

    Article  Google Scholar 

  • Saitô H (1986) Conformation-dependent 13C chemical shifts: a new means of conformational characterization as obtained by high-resolution solid-state 13C NMR. Magn Reson Chem 24:835–852

    Article  Google Scholar 

  • Shrake A, Rupley JA (1973) Environment and exposure to solvent of protein atoms. Lysozyme and Insulin. J Mol Biol 79:351–364

    Article  Google Scholar 

  • Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C Nuclear Magnetic Resonance chemical shifts. J Am Chem Soc 113:5490–5492

    Article  Google Scholar 

  • Szilágyi L (1995) Chemical shifts in proteins come of age. Prog Nucl Magn Reson Spectrosc 27:325–443

    Article  Google Scholar 

  • Venters RA, Farmer II BT, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116

    Article  Google Scholar 

  • Villegas ME, Vila JA, Scheraga HA (2007) Effects of side-chain orientation on the 13C chemical shifts of antiparallel β-sheet model peptides. J Biomol NMR 37:137–146

    Article  Google Scholar 

  • Wagner G, Pardi A, Wüthrich K (1983) Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105:5948–5949

    Article  Google Scholar 

  • Wang LY, Eghbalnia HR, Bahrami A, Markley JL (2005) Linear analysis of carbon-13 chemical shift differences and its application to the detection and correction of errors in referencing and spin system identifications. J Biomol NMR 32:13

    Article  Google Scholar 

  • Wang YJ, Jardetzky O (2002) Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 124:14075–14084

    Article  Google Scholar 

  • Wang YJ, Jardetzky O (2004) Predicting 15N chemical shifts in proteins using the preceding residue-specific individual shielding surfaces from ϕ, ψi − 1, and χ1 torsion angles. J Biomol NMR 28:327–340

    Article  Google Scholar 

  • Wang YJ, Wishart DS (2005) A simple method to adjust inconsistently referenced 13C and 15N chemical shift assignments of proteins. J Biomol NMR 31:143–148

    Article  MATH  Google Scholar 

  • Wei Y, Lee DK, Ramamoorthy A (2001) Solid-State 13C NMR chemical shift anisotropy tensors of polypeptides. J Am Chem Soc 123:6118–6126

    Article  Google Scholar 

  • Williamson MP (1990) Secondary-structure dependent chemical shifts in proteins. Biopolymers 29:1423–1431

    Article  Google Scholar 

  • Williamson MP, Kikuchi J, Asakura T (1995) Application of 1H NMR chemical shifts to measure the quality of protein structures. J Mol Biol 247:541–546

    Article  Google Scholar 

  • Wishart DS, Case DA (2002) Use of chemical shifts in macromolecular structure determination. Methods Enzymol 338:3–34

    Article  Google Scholar 

  • Wishart DS, Nip AM (1998) Protein chemical shift analysis: a practical guide. Biochem Cell Biol 76:153–163

    Article  Google Scholar 

  • Wishart DS, Sykes BD (1994) The 13C Chemical-Shift index—a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 4:171–180

    Article  Google Scholar 

  • Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333

    Article  Google Scholar 

  • Wishart DS, Watson MS, Boyko RF, Sykes BD (1997) Automated 1H and 13C chemical shift prediction using the BioMagResBank. J Biomol NMR 10:329–336

    Article  Google Scholar 

  • Xu XP, Case DA (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database. J Biomol NMR 21:321–333

    Article  Google Scholar 

  • Xu XP, Case DA (2002) Probing multiple effects on 15N, 13Cα, 13Cβ, and 13C′ chemical shifts in peptides using density functional theory. Biopolymers 65:408–423

    Article  Google Scholar 

  • Zhang HY, Neal S, Wishart DS (2003) RefDB: a database of uniformly referenced protein chemical shifts. J Biomol NMR 25:173–195

    Article  Google Scholar 

  • Zheng G, Wang L, Hu J, Zhang X, Shen L, Ye C, Webb GA (1997) Hydrogen bonding effects on the 13C NMR chemical shift tensors of some amino acids in the solid state. Magn Reson Chem 35:606–608

    Article  Google Scholar 

Download references

Acknowledgement

We thank Dr. Frank Delaglio for helpful discussions and comments on the coding, and testing of SPARTA, and Dr. Jinfa Ying for sharing the results of DFT calculations of the relation between chemical shift and geometry distortion. This work was supported by the Intramural Research Program of the NIDDK, NIH, and by the Intramural AIDS-Targeted Antiviral Program of the Office of the Director, NIH.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Shen or Ad Bax.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10858_2007_9166_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Bax, A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38, 289–302 (2007). https://doi.org/10.1007/s10858-007-9166-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10858-007-9166-6

Keywords

Navigation