Skip to main content

Advertisement

Log in

Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering

  • Engineering and Nano-engineering Approaches for Medical Devices
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

In this work, the coating of 3-D foam-like glass–ceramic scaffolds with a bioactive mesoporous glass (MBG) was investigated. The starting scaffolds, based on a non-commercial silicate glass, were fabricated by the polymer sponge replica technique followed by sintering; then, electrophoretic deposition (EPD) was applied to deposit a MBG layer on the scaffold struts. EPD was also compared with other techniques (dipping and direct in situ gelation) and it was shown to lead to the most promising results. The scaffold pore structure was maintained after the MBG coating by EPD, as assessed by SEM and micro-CT. In vitro bioactivity of the scaffolds was assessed by immersion in simulated body fluid and subsequent evaluation of hydroxyapatite (HA) formation. The deposition of a MBG coating can be a smart strategy to impart bioactive properties to the scaffold, allowing the formation of nano-structured HA agglomerates within 48 h from immersion, which does not occur on uncoated scaffold surfaces. The mechanical properties of the scaffold do not vary after the EPD (compressive strength ~19 MPa, fracture energy ~1.2 × 106 J m−3) and suggest the suitability of the prepared highly bioactive constructs as bone tissue engineering implants for load-bearing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hench LL. The story of Bioglass®. J Mater Sci Mater Med. 2006;17:967–78.

    Article  Google Scholar 

  2. Hench LL, Splinter RJ, Allen WC, Greenlee TK. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res. 1971;5:117–41.

    Article  Google Scholar 

  3. Hoppe A. Guldal, Boccaccini AR. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials. 2011;32:2757–9.

    Article  Google Scholar 

  4. Hench LL. Glass and glass-ceramic technologies to transform the world. Int J Appl Glass Sci. 2011;2:162–76.

    Article  Google Scholar 

  5. Yuan H, De Bruijn JD, Zhang X, Van Blitterswijk CA, De Groot K. Bone induction by porous glass ceramic made from Bioglass® (45S5). J Biomed Mater Res (Appl Biomater). 2001;58:270–6.

    Article  Google Scholar 

  6. Chen Q, Thompson ID, Boccaccini AR. 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials. 2006;27:2414–25.

    Article  Google Scholar 

  7. Vitale-Brovarone C, Verné E, Robiglio L, Appendino P, Bassi F, Martinasso G, Canuto RA. Development of glass-ceramic scaffolds for bone tissue engineering: characterisation proliferation of human osteobasts and nodule formation. Acta Biomater. 2007;3:199–208.

    Article  Google Scholar 

  8. Bellucci D, Chiellini F, Ciardelli G, Gazzarri M, Gentile P, Sola A, Cannillo V. Processing and characterization of innovative scaffold for bone tissue engineering. J Mater Sci Mater Med. 2012;23:1397–409.

    Article  Google Scholar 

  9. Baino F, Ferraris M, Bretcanu O, Verné E, Vitale-Brovarone C. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution. J Biomater Appl. 2013;27:872–90.

    Article  Google Scholar 

  10. Gerhardt LC, Boccaccini AR. Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials. 2010;3:3867–910.

    Article  Google Scholar 

  11. Baino F, Vitale-Brovarone C. Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A. 2011;97:514–35.

    Article  Google Scholar 

  12. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF. Tomsia AP Bioactive glass in tissue engineering. Acta Biomater. 2011;7:2355–73.

    Article  Google Scholar 

  13. Vitale-Brovarone C, Baino F, Tallia F, Gervasio C, Verné E. Bioactive glass-derived trabecular coating: a smart solution for enhancing osteointegration of prosthetic elements. J Mater Sci Mater Med. 2012;23:2369–80.

    Article  Google Scholar 

  14. Chen Q, Baino F, Pugno NM, Vitale-Brovarone C. Bonding strength of glass-ceramic trabecular-like coatings to ceramic substrates for prosthetic applications. Mater Sci Eng C. 2013;33:1530–8.

    Article  Google Scholar 

  15. Baino F, Vitale-Brovarone C. Mechanical properties and reliability of glass-ceramic foam scaffolds for bone repair. Mater Lett. 2014;118:27–30.

    Article  Google Scholar 

  16. Wu C, Zhang Y, Zhu Y, Friis T, Xiao Y. Structure-property relationships of silk-modified mesoporous bioglass scaffolds. Biomaterials. 2010;31:3429–38.

    Article  Google Scholar 

  17. Wu C, Fan W, Zhu Y, Gelinsky M, Chang J, Cuniberti G, Albrecht V, Friis T, Xiao Y. Multifunctional magnetic mesoporous bioactive glass scaffolds with a hierarchical pore structure. Acta Biomater. 2011;7:3563–72.

    Article  Google Scholar 

  18. Boccaccini AR, Keim S, Ma R, Li Y, Zhitomirsky I. Electrophoretic deposition of biomaterials. J R Soc Interface. 2010;7:S581–613.

    Article  Google Scholar 

  19. Ducheyne P, Van Raemdonck W, Heughebaert JC, Heughebaert M. Structural analysis of hydroxyapatite coatings on titanium. Biomaterials. 1986;7:97–103.

    Article  Google Scholar 

  20. Zhitomirsky I, Gal-Or L. Electrophoretic deposition of hydroxyapatite. J Mater Sci Mater Med. 1997;8:213–9.

    Article  Google Scholar 

  21. Krause D, Thomas B, Leinenbach C, Eifler D, Minay EJ, Boccaccini AR. The electrophoretic deposition of Bioglass particles on stainless steel and Nitinol substrates. Surf Coating Technol. 2006;200:4835–45.

    Article  Google Scholar 

  22. Roether JA, Boccaccini AR, Hench LL, Maquet V, Gautier S, Jerome R. Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications. Biomaterials. 2002;18:3871–8.

    Article  Google Scholar 

  23. Boccaccini AR, Peters C, Roether JA, Eifler D, Misra SK, Minay EJ. Electrophoretic deposition of polyetheretherketone (PEEK) and PEEK/Bioglass coatings on NiTi shape memory alloy wires. J Mater Sci. 2006;41:8152–9.

    Article  Google Scholar 

  24. Patel KD, El-Fiqi A, Lee HY, Singh RK, Kim DA, Lee HH, Kim HW. Chitosan-nanobioactive glass electrophoretic coating with bone regenerative and drug delivering potential. J Mater Chem. 2012;22:24945–56.

    Article  Google Scholar 

  25. Meng D. Narayan Rath S, Mordan N, Salih V, Kneser U, Boccaccini AR. In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes. J Biomed Mater Res A. 2011;99:435–44.

    Article  Google Scholar 

  26. Vitale-Brovarone C, Baino F, Verné E. High strength bioactive glass-ceramic scaffolds for bone regeneration. J Mater Sci Mater Med. 2009;20:643–53.

    Article  Google Scholar 

  27. Ma H, Baino F, Fiorilli S, Vitale-Brovarone C, Onida B. Al-MCM-41 inside a glass-ceramic scaffold: a meso-macroporous system for acid catalysis. J Eur Ceram Soc. 2013;33:1535–43.

    Article  Google Scholar 

  28. Baino F, Fiorilli S, Mortera R, Onida O, Saino E, Visai L, Verné E, Vitale-Brovarone C. Mesoporous bioactive glass as a multifunctional system for bone regeneration and controlled drug release. J Appl Biomater Funct Mater. 2012;10:12–21.

    Google Scholar 

  29. Besra L, Liu MA. review on fundamentals and applications of electrophoretic deposition (EPD). Prog Mater Sci. 2007;52:1–61.

    Article  Google Scholar 

  30. Boccaccini AR, Chicatun F, Cho J, Bretcanu O, Roether JA, Novak S, Chen Q. Adv Funct Mater. 2007;17:2815–22.

    Article  Google Scholar 

  31. Thommes M, Kohn R, Froba M. Sorption and pore condensation behavior of pure fluids in mesoporous MCM-48 silica, MCM-41 silica, SBA-15 silica and controlled-pore glass at temperatures above and below the bulk triple point. Appl Surf Sci. 2002;196:239–49.

    Article  Google Scholar 

  32. Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials. 2006;27:2907–15.

    Article  Google Scholar 

  33. Kenesei P, Kadar C, Rajkovits Z, Lendvai J. The influence of cell-size distribution on the plastic deformation in metal foams. Scripta Mater. 2004;50:295–300.

    Article  Google Scholar 

  34. Karageorgiou V, Kaplan D. Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials. 2005;26:5474–91.

    Article  Google Scholar 

  35. Kokubo T, Kushitani H, Ohtsuki C, Sakka S, Yamamuro T. Effects of ions dissolved from bioactive glass-ceramics on surface apatite formation. J Mater Sci Mater Med. 1993;4:1–4.

    Article  Google Scholar 

  36. Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2009;2:399–498.

    Article  Google Scholar 

  37. Anselme K, Davidson P, Popa A, Giazzon M, Liley M, Ploux L. The interaction of cells and bacteria with surfaces structured at the nanometer scale. Acta Biomater. 2010;6:3824–46.

    Article  Google Scholar 

  38. Hench LL, Wilson J. An introduction to bioceramics. Singapore: World Scientific; 1993.

    Book  Google Scholar 

  39. Sepulveda P, Jones JR, Hench LL. In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res, Part A. 2002;61:301–11.

    Article  Google Scholar 

  40. Pereira MM, Jones JR, Hench LL. Bioactive glass and hybrid scaffolds prepared by sol-gel method for bone tissue engineering. Adv Appl Ceram. 2005;104:35–42.

    Article  Google Scholar 

  41. Lopez-Noriega A, Arcos D, Izquiendo-Barba I, Sakamoto Y, Terasaki O, Vallet-Regi M. Ordered mesoporus bioactive glasses for bone tissue regeneration. Chem Mater. 2006;18:3137–44.

    Article  Google Scholar 

  42. Pishbin F, Mouriño V, Gilchrist JB, McComb DW, Kreppel S, Salih V, Ryan MP, Boccaccini AR. Single-step electrochemical deposition of antimicrobial orthopaedic coatings based on a bioactive glass/chitosan/nano-silver composite system. Acta Biomater. 2013;9:7669–79.

    Article  Google Scholar 

  43. Verné E, Miola M, Vitale-Brovarone C, Cannas M, Gatti S, Fucale G, Maina G, Massé A, Di Nunzio S. Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass. J Mater Sci Mater Med. 2009;20:733–40.

    Article  Google Scholar 

  44. Vitale-Brovarone C, Ciapetti G, Leonardi E, Baldini N, Bretcanu O, Verné E, Baino F. Resorbable glass-ceramic phosphate-based scaffolds for bone tissue engineering: synthesis, properties and in vitro effects on human marrow stromal cells. J Biomater Appl. 2011;26:465–89.

    Article  Google Scholar 

  45. Bretcanu O, Baino F, Verné E, Vitale-Brovarone C. Novel resorbable glass-ceramic scaffolds for hard tissue engineering: from the parent phosphate glass to its bone-like macroporous derivatives. J Biomater Appl. 2014;28:1287–303.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Onida.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiorilli, S., Baino, F., Cauda, V. et al. Electrophoretic deposition of mesoporous bioactive glass on glass–ceramic foam scaffolds for bone tissue engineering. J Mater Sci: Mater Med 26, 21 (2015). https://doi.org/10.1007/s10856-014-5346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10856-014-5346-6

Keywords

Navigation