Skip to main content
Log in

Hydroxyapatite formation from cuttlefish bones: kinetics

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Highly porous hydroxyapatite (Ca10(PO4)6·(OH)2, HA) was prepared through hydrothermal transformation of aragonitic cuttlefish bones (Sepia officinalis L. Adriatic Sea) in the temperature range from 140 to 220°C for 20 min to 48 h. The phase composition of converted hydroxyapatite was examined by quantitative X-ray diffraction (XRD) using Rietveld structure refinement and Fourier transform infrared spectroscopy (FTIR). Johnson–Mehl–Avrami (JMA) approach was used to follow the kinetics and mechanism of transformation. Diffusion controlled one dimensional growth of HA, predominantly along the a-axis, could be defined. FTIR spectroscopy determined B-type substitutions of CO3 2− groups. The morphology and microstructure of converted HA was examined by scanning electron microscopy. The general architecture of cuttlefish bones was preserved after hydrothermal treatment and the cuttlefish bones retained its form with the same channel size (~80 × 300 μm). The formation of dandelion-like HA spheres with diameter from 3 to 8 μm were observed on the surface of lamellae, which further transformed into various radially oriented nanoplates and nanorods with an average diameter of about 200–300 nm and an average length of about 8–10 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hench LL, Wilson J. Introduction to bioceramics.  Singapore: World Scientific; 1993.

  2. LeGeros RZ, LeGeros JP. Dense hydroxyapatite. In: Hench LL, Wilson J, editors. Introduction to bioceramics. Singapore: World Scientific; 1993. p. 138–90.

    Google Scholar 

  3. Shin H, Jo S, Mikos AG. Biomimetic materials for tissue engineering. Biomaterials. 2003;24:4353–64.

    Article  CAS  PubMed  Google Scholar 

  4. Wilson CE, de Bruijn JD, van Blitterswijk CA, Verbout AJ, Dhert WJA. Design and fabrication of standarized hydroxyapatite scaffold with a defined macro-architecture by rapid prototyping for bone-tissue engineering research. J Biomed Mater Res A. 2003;68A:123–32.

    Article  Google Scholar 

  5. Lemos AF, Ferreira JMF. Designing of bioceramics with bonelike structures tailored for different orthopedic applications. Key Eng Mater. 2004;254–256:1037–40.

    Article  Google Scholar 

  6. LeGeros LZ. In: Brown PW, Constantz B, editors. Hydroxyapatite and related materials. Boca Raton: CRC Press; 1994.

    Google Scholar 

  7. Murugan R, Ramakrishna S, Rao KP. Nanoporous hydroxy-carbonate apatite scaffold made of naturale bone. Mater Lett. 2006;60:2844–7.

    Article  CAS  Google Scholar 

  8. Murugan R, Ramakrishna S. Production of ultra-fine bioresorable carbonated hydroxyapatite. Acta Biomater. 2006;2:201–6.

    Article  CAS  PubMed  Google Scholar 

  9. Hu J, Russell JJ, Ben-Nissan B, Vago R. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. J Mater Sci Lett. 2001;20:85–7.

    Article  CAS  Google Scholar 

  10. Vecchio KS, Zhang X, Massie JB, Wang M, Kim CW. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomater. 2007;3:910–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ni M, Ratner BD. Nacre surface transformation to hydroxyapatite in a phosphate buffer solution. Biomaterials. 2003;24:4323–31.

    Article  CAS  PubMed  Google Scholar 

  12. Rocha JHG, Lemos AF, Agathopoulos S, Valério P, Kannan S, Oktar FN, Ferreira JMF. Scaffolds for bone restoration from cuttlefish. Bone. 2005;37:850–7.

    Article  CAS  PubMed  Google Scholar 

  13. Rocha JHG, Lemos AF, Kannan S, Agatholopoulos S, Ferreira JMF. Hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones. J Mater Chem. 2005;15:5007–11.

    Article  CAS  Google Scholar 

  14. Rocha JHG, Lemos AF, Agatholopoulos S, Kannan S, Valerio P, Ferreira JMF. Hydrothermal growth of hydroxyapatite scaffolds from aragonitic cuttlefish bones. Biomed Mater Res A. 2006;77A:160–8.

    Article  CAS  Google Scholar 

  15. Eysel W, Roy DM. Topotactic reaction of aragonite to hydroxyapatite. Z Kristallogr. 1975;141:11–24.

    Article  CAS  Google Scholar 

  16. Zaremba CM, Morse DE, Mann S, Hansma PK, Stucky GD. Aragonite-hydroxyapatite conversion in gastropod (abalone) nacre. Chem Mater. 1998;10:3813–24.

    Article  CAS  Google Scholar 

  17. Yoshimura M, Sujaridworakun P, Koh F, Fujiwara F, Pongkau D, Ahniyaz A. Hydrothermal conversion of calcite crystals to hydroxyapatite. Mater Sci Eng C. 2004;24:521–4.

    Article  Google Scholar 

  18. Jinawath S, Polchai D, Yoshimura M. Low-twemperature hydrothermal transformation of aragonite to hydroxyapatite. Mater Sci Eng C. 2002;22:35–9.

    Article  Google Scholar 

  19. Huang LY, Xu KW, Lu J. A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J Mater Sci Mater Med. 2000;11:667–73.

    Article  CAS  PubMed  Google Scholar 

  20. Liu CS, Huang Y, Shen W, Cui JH. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials. 2001;22:301–6.

    Article  CAS  PubMed  Google Scholar 

  21. Lopatin CM, Pizziconi VB, Alford TL. Crystallization kinetics of sol–gel derived hydroxyapatite thin films. J Mater Sci Mater Med. 2001;12:767–73.

    Article  CAS  PubMed  Google Scholar 

  22. Young RA. The Rietveld method. International Union of Crystallography. Monographs on crystalography, vol. 5. Oxford: Oxford Press; 1993.

    Google Scholar 

  23. The software TOPAS V 2.1 of Bruker advanced X-ray solution. Karlsruhe, Germany: Bruker AXS; 2003.

  24. Kay MI, Young RA, Posner AS. Crystal structure of hydroxyapatite. Nature. 1984;204:1050–2.

    Article  ADS  Google Scholar 

  25. Sundarsanan K, Young RA. Significant precision in crystal structural details: holly springs hydroxyapatite. Acta Crystallogr B. 1969;25:1534–43.

    Article  Google Scholar 

  26. Dickens B, Bowen JS. ICDD:76-0606. J Res Natl Bul Stand A. 1971;75:27.

    CAS  Google Scholar 

  27. Cullity BD. Elements of X-ray diffraction. 2nd ed. Adison Wesley: Reading, MA; 1978.

    Google Scholar 

  28. Lemos AF, Rocha JHG, Quaresma SSF, Kannan S, Oktar FN, Agatholopoulos S, Ferreira JMF. Hydroxyapatite nano-powders produced hydrothermally from nacreous material. J Eur Ceram Soc. 2006;26:3639–46.

    Article  CAS  Google Scholar 

  29. Pasteris JD, Wopenka B, Freeman JJ, Rogers K, Valsami-Jones E, van der Houwen JAM, Silva MJ. Lack of OH in nanocrystalline apatite as a foncion of degree of atomic order: implications for bone and biomaterials. Biomaterials. 2004;25:229–38.

    Article  CAS  PubMed  Google Scholar 

  30. El Feki H, Savariault JM, Ben Salah A. Structure refinements by the Rietveld method of partially substituted hydroxyapatite: Ca9Na0.5(PO4)4.5(CO3)1.5(OH)2. J Alloys Compd. 1999;287:114–20.

    Article  CAS  Google Scholar 

  31. Landi E, Celotti G, Logroscino G, Tampieri A. Carbonated hydroxyapatite as bone substitute. J Eur Ceram Soc. 2003;23:2931–7.

    Article  CAS  Google Scholar 

  32. Hong ZD, Luan L, Paik SB, Deng B, Ellis DE, Ketterson JB, Mello A, Eon JG, Terra J, Rossi A. Crystalline hydroxyapatite thin films produced at room temperature an opposing radio frequency magnetron sputtering approach. Thin Solid Films. 2007;515:6773–80.

    Article  CAS  ADS  Google Scholar 

  33. Johnson WA, Mehl RF. Reaction kinetics in procesess of nucleation and growth. Trans Am Inst Min Eng. 1939;135:416–42.

    Google Scholar 

  34. Avrami M. Kinetics of phase change. J Chem Phys. 1941;9:177–84.

    Article  CAS  ADS  Google Scholar 

  35. Birchall JD, Thomas NL. On the architecture and function of cuttlefish bone. J Mater Sci. 1983;18:2081–6.

    Article  CAS  ADS  Google Scholar 

  36. Liu JB, Li KW, Wang H, Zhu M, Yan H. Rapid formation of hydroxyapatite nanostructures by microwave irradiation. Chem Phys Lett. 2004;396:429–32.

    Article  CAS  ADS  Google Scholar 

  37. Lundager Madsen HE. Influence of foreign metal ions on crystal growth and morphology of brushite (CaHPO4·2H2O) and its transformation to octacalcium phosphate and apatite. J. Cryst Growth. 2008;310:2602–12.

    Article  CAS  ADS  Google Scholar 

  38. Oliveira C, Ferreira A, Rocha F. Dicalcium phosphate dihydrate precipitation. Characterization and crystal growth. Chem Eng Res Des. 2007;85:1655–61.

    CAS  Google Scholar 

  39. Pérez-Maqueda LA, Criado JM, Malek J. Combined analysis for crystallization kinetics of non-crystalline solids. J Non-Cryst Sol. 2003;320:84–91.

    Article  Google Scholar 

  40. Christian JW. The theory of transformation in metals and alloys. 3rd ed. Oxford: Pergamon; 2002.

    Google Scholar 

  41. Tas AC, Bhaduri SB. Chemical processing of CaHPO·2H2O: its conversion to hydroxyapatite. J Am Ceram Soc. 2004;87:2195–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the Ministry of Science, Education and Sports of the Republic of Croatia in the framework of the project “Bioceramic, Polymer and Composite Nanostructured Materials” (No.125-1252970-3005) and Universidad Politecnica de Valencia (Centro de Biomateriales), Spain is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ivankovic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivankovic, H., Tkalcec, E., Orlic, S. et al. Hydroxyapatite formation from cuttlefish bones: kinetics. J Mater Sci: Mater Med 21, 2711–2722 (2010). https://doi.org/10.1007/s10856-010-4115-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10856-010-4115-4

Keywords

Navigation