Skip to main content

Advertisement

Log in

P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

P2-type layered cathode materials containing Fe and Mn have attracted much attention due to their elemental abundance, low costs and high reversible capacities, and most related work have focused on attaining cathodes with extremely high reversible capacity. However, the extremely high capacity usually leads to several disadvantages, including extremely wide voltage range, fast capacity fading upon cycling, and inappropriate initial Coulombic efficiency. This work investigates P2-type Na0.67Ni0.15Fe0.35Mn0.5O2 (NFM) and Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 (NFMT) as high-energy cathode materials by elevating average operating voltage with Ni2+/Ni4+ and Fe3+/Fe4+ redox couples but limiting (de)sodiation in the voltage of 2.0–4.4 V to obtain an medium reversible capacity. NFMT has high energy density of 471 Wh kg−1 with reversible capacity of 157.2 mAh g−1 and average operating voltage of 3.0 V. NFMT also has an initial Coulombic efficiency of 98.8% and a capacity retention of 85.1% after 50 cycles at 20 mA g−1 (0.1C), better than those of some high-capacity P2-type Fe and Mn-based cathodes, showing great potential for future practical application in the sodium full cells. Ti4+ ion acts as pillar ion in the fully charged NFMT cathode, effectively suppressing thickness reduction of the MO2 slab, volume shrinkage of the cathode, and thus inhibiting P2–O2 phase transition at high voltage, which contribute to the improvement of the structural and cycling stability P-type oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.-L. Xu, R. Amine, A. Abouimrane, H. Che, M. Dahbi, Z.-F. Ma, I. Saadoune, J. Alami, W. Liu Mattis, F. Pan, Z. Chen, K. Amine, Adv. Energy Mater. 8, 1702403 (2018)

    Article  Google Scholar 

  2. L. Li, Y. Zheng, S. Zhang, J. Yang, Z. Shao, Z. Guo, Energy Environ. Sci. 11, 2310–2340 (2018)

    Article  CAS  Google Scholar 

  3. J. Ma, F. Li, Z. Wei, Y. Feng, A. Manthiram, L. Mai, J. Mater. Chem. A 7, 9406–9431 (2019)

    Article  Google Scholar 

  4. R. Zhang, Z. Lu, Y. Yang, W. Shi, Curr. Appl. Phys. 18, 1431–1435 (2018)

    Article  Google Scholar 

  5. Y. You, A. Manthiram, Adv. Energy Mater. 8, 1701785 (2017)

    Article  Google Scholar 

  6. Y. Sun, S. Guo, H. Zhou, Energy Environ. Sci. 12, 825–840 (2019)

    Article  CAS  Google Scholar 

  7. P.F. Wang, Y. You, Y.X. Yin, Y.G. Guo, Adv. Energy Mater. 8, 1701912 (2018)

    Article  Google Scholar 

  8. J.H. Jo, J.U. Choi, A. Konarov, H. Yashiro, S. Yuan, L. Shi, Y.K. Sun, S.T. Myung, Adv. Funct. Mater. 28, 1705968 (2018)

    Article  Google Scholar 

  9. E. Altin, S. Altundag, S. Altin, A. Bayri, J. Mater. Sci. 30, 17848–17855 (2019)

    CAS  Google Scholar 

  10. J.H. Hong, M.Y. Wang, Y.Y. Du, L. Deng, G. He, J. Mater. Sci. 30, 4006–4013 (2019)

    CAS  Google Scholar 

  11. C. Delmas, C. Fouassier, P. Hagenmuller, Physica B+C 99, 81–85 (1980)

    Article  CAS  Google Scholar 

  12. N. Yabuuchi, M. Kajiyama, J. Iwatate, H. Nishikawa, S. Hitomi, R. Okuyama, R. Usui, Y. Yamada, S. Komaba, Nat. Mater. 11, 512–517 (2012)

    Article  CAS  Google Scholar 

  13. D. Yuan, X. Hu, J. Qian, F. Pei, F. Wu, R. Mao, X. Ai, H. Yang, Y. Cao, Electrochimi. Acta 116, 300–305 (2014)

    Article  CAS  Google Scholar 

  14. L. Liu, X. Li, S.-H. Bo, Y. Wang, H. Chen, N. Twu, D. Wu, G. Ceder, Adv. Energy Mater. 5, 1500944 (2015)

    Article  Google Scholar 

  15. E. Talaie, S.Y. Kim, N. Chen, L.F. Nazar, Chem. Mater. 29, 6684–6697 (2017)

    Article  CAS  Google Scholar 

  16. H. Wang, R. Gao, Z. Li, L. Sun, Z. Hu, X. Liu, Inorg. Chem. 57, 5249–5257 (2018)

    Article  CAS  Google Scholar 

  17. H. Wang, Z.-Y. Li, W. Yang, J. Yang, D. Chen, C. Su, X. Liu, Electrochimi. Acta 277, 88–99 (2018)

    Article  CAS  Google Scholar 

  18. M.H. Han, E. Gonzalo, N. Sharma, J.M. López del Amo, M. Armand, M. Avdeev, J.J. Saiz Garitaonandia, T. Rojo, Chem. Mater. 28, 106–116 (2015)

    Article  CAS  Google Scholar 

  19. X. Zhu, T. Lin, E. Manning, Y. Zhang, M. Yu, B. Zuo, L. Wang, J. Nanopart. Res. 20, 160 (2018)

    Article  Google Scholar 

  20. R.D. Shannon, Acta Crystallogr. Sect. A 32, 751–767 (1976)

    Article  Google Scholar 

  21. Z.Y. Li, H. Wang, W. Yang, J. Yang, L. Zheng, D. Chen, K. Sun, S. Han, X. Liu, ACS Appl. Mater. Interfaces 10, 1707–1718 (2018)

    Article  CAS  Google Scholar 

  22. X. Zhang, K. Jiang, S. Guo, X. Mu, X. Zhang, P. He, M. Han, H. Zhou, Chem. Commun. 54, 12167–12170 (2018)

    Article  CAS  Google Scholar 

  23. D. Zhou, W. Huang, F. Zhao, Solid State Ionics 322, 18–23 (2018)

    Article  CAS  Google Scholar 

  24. H.V. Ramasamy, K. Kaliyappan, R. Thangavel, W.M. Seong, K. Kang, Z. Chen, Y.-S. Lee, J. Phys. Chem. Lett. 8, 5021–5030 (2017)

    Article  CAS  Google Scholar 

  25. H. Yoshida, N. Yabuuchi, K. Kubota, I. Ikeuchi, A. Garsuch, M. Schulz-Dobrick, S. Komaba, Chem. Commun. 50, 3677–3680 (2014)

    Article  CAS  Google Scholar 

  26. A. Milewska, K. Świerczek, W. Zając, J. Molenda, J. Power Sources 404, 39–46 (2018)

    Article  CAS  Google Scholar 

  27. X. Sun, Y. Jin, C.Y. Zhang, J.W. Wen, Y. Shao, Y. Zang, C.H. Chen, J. Mater. Chem. A 2, 17268–17271 (2014)

    Article  CAS  Google Scholar 

  28. H.X. Zong, C.J. Cong, L.N. Wang, G.H. Guo, Q.Y. Liu, K.L. Zhang, J. Solid State Electrochem. 11, 195–200 (2007)

    Article  CAS  Google Scholar 

  29. S.-J. Lim, D.-W. Han, D.-H. Nam, K.-S. Hong, J.-Y. Eom, W.-H. Ryu, H.-S. Kwon, J. Mater. Chem. A 2, 19623–19632 (2014)

    Article  CAS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhe Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Wei, W., Xiao, S. et al. P2-type Fe and Mn-based Na0.67Ni0.15Fe0.35Mn0.3Ti0.2O2 as cathode material with high energy density and structural stability for sodium-ion batteries. J Mater Sci: Mater Electron 31, 9423–9429 (2020). https://doi.org/10.1007/s10854-020-03482-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03482-9

Navigation