Skip to main content

Advertisement

Log in

Design and solderability characterization of novel Au–30Ga solder for high-temperature packaging

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To meet the needs of high-temperature packaging for high-power devices, a novel Au–30Ga solder was designed and prepared, and its solderability was characterized in this work. The results showed that it was a eutectic alloy with a melting point of 450 ℃, consisting of AuGa phase and AuGa2 phase. The novel Au–30Ga solder possessed high thermal conductivity, excellent wettability and higher working temperature than traditional Au-based solders. The shear strength of Au–30Ga/Ni joint can reach 77.1 MPa, which was much higher than that of Au–20Sn/Ni and Au–12Ge/Ni joints. The addition of a trace amount of Ni helped to enhance the shear strength of the Au–30Ga/Ni joint, but had no significant effect on the microstructure of the Au–30Ga/Ni joint. Two Ni–Ga intermetallic compound layers were formed at the Au–30Ga/Ni interface, which thickened with an increase in soldering time. In addition, a new Au7Ga3 phase would be observed in the seam when the reflow time was more than 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. H.S. Chin, K.Y. Cheong, A.B. Ismail, Metall. Mater. Trans. B 41, 824 (2010)

    Article  Google Scholar 

  2. H.Y. Zhao, J.H. Liu, Z.L. Li, X.G. Song, Y.X. Zhao, H.W. Niu, H. Tian, H.J. Dong, J.C. Feng, Metall. Mater. Trans. A 49, 2739 (2018)

    Article  CAS  Google Scholar 

  3. W. Wondrak, R. Held, E. Niemann, U. Schmid, IEEE Trans. Ind. Electron. 48, 307 (2001)

    Article  Google Scholar 

  4. R. Singh, S.H. Ryu, D.C. Capell, J.W. Palmour, IEEE Trans. Electron Devices 50, 774 (2003)

    Article  CAS  Google Scholar 

  5. L.J. Wang, S.B. Xue, H. Liu, Y.W. Lin, H.N. Chen, Mater. Rep. 33, 2483 (2019)

    Google Scholar 

  6. H. Liu, S.B. Xue, L.J. Wang, Y.W. Lin, H.N. Chen, Mater. Rep. 33, 3189 (2019)

    Google Scholar 

  7. C. Buttay, A. Masson, J. Li, M. Johnson, M. Lazar, C. Raynaud, H. Morel, Additional Papers and Presentations, 84 (2011)

  8. F. Le Henaff, S. Azzopardi, J.Y. Deletage, E. Woirgard, S. Bontemps, J. Joguet, Microelectron. Reliab. 52, 2321 (2012)

    Article  Google Scholar 

  9. S.Y. Zhao, X. Li, Y.H. Mei, G.Q. Lu, J. Electron. Mater. 45, 5789 (2016)

    Article  CAS  Google Scholar 

  10. S.T. Chua, K.S. Siow, J. Alloys Compd. 687, 486 (2016)

    Article  CAS  Google Scholar 

  11. L. Wen, S.B. Xue, C.L. Ma, W.M. Long, S.J. Zhong, Mater. Rep. 33, 386 (2019)

    Google Scholar 

  12. K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (Springer, Cham, 2019), pp. 125–150

    Book  Google Scholar 

  13. G.Q. Lu, W. Yang, Y.H. Mei, X. Li, G. Chen, X. Chen, IEEE Trans. Device Mater. Reliab. 14, 311 (2013)

    Article  Google Scholar 

  14. X. Liu, H. Nishikawa, Scripta Mater. 120, 80 (2016)

    Article  CAS  Google Scholar 

  15. Y. Gao, H. Zhang, W.L. Li, J.T. Jiu, S. Nagao, T. Sugahara, K. Suganuma, J. Electron. Mater. 46, 4575 (2017)

    Article  CAS  Google Scholar 

  16. T.A. Tollefsen, A. Larsson, O.M. Løvvik, K.E. Aasmundtveit, IEEE Trans. Compon. Packag. Manuf. Technol. 3, 904 (2013)

    Article  CAS  Google Scholar 

  17. K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (Springer, Cham, 2019), pp. 197–249

    Book  Google Scholar 

  18. K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (Springer, Cham, 2019), pp. 251–274

    Book  Google Scholar 

  19. A. Drevin-Bazin, F. Lacroix, J.F. Barbot, J. Electron. Mater. 43, 695 (2014)

    Article  CAS  Google Scholar 

  20. W.J. Mo, Z.F. Wang, G.S. Jiang, H.S. Wang, Rare Met. Mater. Eng. 34, 497 (2005)

    CAS  Google Scholar 

  21. D.T. Cui, Degree Thesis, Central South University (Changsha), Dec 2008

  22. H. Taniguchi, inventor; Tanaka Kikinzoku Kogyo KK, assignee, U.S. Patent 9604317, 2017

  23. V.R. Manikam, K.Y. Cheong, IEEE Trans. Compon. Packag. Manuf. Technol. 1, 457 (2011)

    Article  CAS  Google Scholar 

  24. K.S. Siow, Die-Attach Materials for High Temperature Applications in Microelectronics Packaging (Springer, Cham, 2019), pp. 35–65

    Book  Google Scholar 

  25. J. Wang, Y.J. Liu, L.B. Liu, H.Y. Zhou, Z.P. Jin, J. Alloys Compd. 509, 3057 (2011)

    Article  CAS  Google Scholar 

  26. J. Wang, Y.J. Liu, L.B. Liu, H.Y. Zhou, Z.P. Jin, Calphad 35, 242 (2011)

    Article  CAS  Google Scholar 

  27. J. Liu, C. Guo, C. Li, Z. Du, J. Alloys Compd. 508, 62 (2010)

    Article  CAS  Google Scholar 

  28. W. Liu, Y. Wang, Y. Ma, Q. Yu, Y. Huang, Mater. Sci. Eng. A. 653, 13 (2016)

    Article  CAS  Google Scholar 

  29. GB/T22588-2008, China Standard Press (2008)

  30. GB/T 1423-1996, China Standard Press (2008)

  31. GB/T 11363-2008, China Standard Press (2008)

  32. H. Okamoto, J. Phase Equilib. Diffus. 34, 174 (2013)

    Article  CAS  Google Scholar 

  33. S. Blairs, M.H. Abbasi, J. Colloid Interface Sci. 304, 549 (2006)

    Article  CAS  Google Scholar 

  34. X.F. Wei, Degree Thesis, Central South University, (Changsha), Oct 2013

  35. H. Okamoto, J. Phase Equilib. Diffus. 31, 575 (2010)

    Article  CAS  Google Scholar 

  36. C. Leinenbach, F. Valenza, D. Giuranno, H.R. Elsener, S. Jin, R. Novakovic, J. Electron. Mater. 40, 1533 (2011)

    Article  CAS  Google Scholar 

  37. X. Wei, Y. Zhang, R. Wang, Y. Feng, Microelectron. Reliab. 53, 748 (2013)

    Article  CAS  Google Scholar 

  38. Y. Ma, T. Wu, W. Liu, Y. Huang, S. Tang, Y. Wang, J. Mater. Sci. 28, 3685 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No. 51675269), the State Key Laboratory of Advanced Brazing Filler Metals & Technology (Zhengzhou Research Institute of Mechanical Engineering Co., Ltd.), China (Grant No. SKLABFMT201704) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Xue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xue, S., Tao, Y. et al. Design and solderability characterization of novel Au–30Ga solder for high-temperature packaging. J Mater Sci: Mater Electron 31, 2514–2522 (2020). https://doi.org/10.1007/s10854-019-02787-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02787-8

Navigation