Skip to main content
Log in

Evidence of compositional fluctuation induced relaxor antiferroelectric to antiferroelectric ordering in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 based lead free ferroelectric

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high temperature electrical phase transitions of (1 − x) Bi0.5Na0.5TiO3–(x) Bi0.5K0.5TiO3 (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) relaxor ferroelectrics have been investigated by employing the dielectric spectroscopy technique. The Rietveld refinement of the XRD patterns reveals the increase of the lattice distortion (c/a) from 1.001 to 1.006 in the tetragonal crystal symmetry (P4mm) with the increase of the BKT (x = 0.10, 0.15, 0.20, 0.25, 0.30 and 0.35) mole fraction. The different bonds vibration (Bi3+/Na+/K+–O and Ti4+–O) related to phonon modes have been studied by analyzing the Raman spectra. The relaxor antiferroelectric ordering temperature (Td: depolarization temperature) of Bi0.5Na0.5TiO3 (BNT) reduce from ~ 200 to ~ 91 °C with the increase of the BKT mole fraction. This observation is well correlated to the formation of polar nanoregions (PNRs) due to the compositional fluctuation in the local crystal structure. Also, Td varies with the frequency of the applied electric. It suggests the presence of the PNRs and, subsequently exhibits the relaxor ferroelectric behavior. The activation energy to activate the PNRs reduces from 2.573 to 2.383 meV with the increase of the BKT mole fraction in the solid solutions. Reduction in remanent electrical polarization and the electrical coercive field in temperature dependent ferroelectric hysteresis loops suggest the relaxor antiferroelectric behavior of the solid solutions (x ≥ 0.15) near the depolarization temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. O.L. Serhiy, R.E. Eitel, Sci. Technol. Adv. Mater. 11, 044302 (2010)

    Article  Google Scholar 

  2. J. Rodel, J.K.G. Webber, R. Dittmer, J. Wook, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)

    Article  Google Scholar 

  3. G.A. Smolensky, V.A. Isupov, A.I. Agranovskaya, N.N. Krainic, Sov. Phys. Solid State 2, 2651 (1961)

    Google Scholar 

  4. H. Nagta, M. Yoshida, Y. Makiuchi, T. Takenaka, Jpn. J. Appl. Phys. 42, 7401–7403 (2003)

    Article  Google Scholar 

  5. Y.S. Sung, J.M. Kim, J.H. Cho, T.K. Song, M.H. Kim, T.G. Park, Appl. Phys. Lett. 96, 202901 (2010)

    Article  Google Scholar 

  6. F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, C.M. Leung, J. Am. Ceram. Soc. 95(6), 1955–1959 (2012)

    Article  Google Scholar 

  7. L. Liu, M. Knapp, H. Ehrenberg, L. Fang, L.A. Schmitt, H. Fuess, M. Hoelzel, M. Hinterstein, J. Appl. Cryst. 49, 574–584 (2016)

    Article  Google Scholar 

  8. S. Sayyed, S.A. Acharya, P. Kautkara, V. Sathe, RSC Adv. 5, 50644 (2015)

    Article  Google Scholar 

  9. D. Lin, C. Xu, Q. Zheng, Y. Wei, D. Gao, J. Mater. Sci.: Mater. Electron. 20, 393–397 (2009)

    Google Scholar 

  10. K.N. Pham, A. Hussain, C.W. Ahn, I.W. Kim, S.J. Jeong, J.-S. Lee, Mater. Lett. 64(20), 2219–2222 (2010)

    Article  Google Scholar 

  11. S.K. Mishra, D. Pandey, A.P. Singh, Appl. Phys. Lett. 69, 1707 (1996)

    Article  Google Scholar 

  12. P. Singh, S.K. Mishra, R. Lal, D. Pandey, Ferroelectrics 163, 103–113 (1995)

    Article  Google Scholar 

  13. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45, 4493–4496 (2006)

    Article  Google Scholar 

  14. E. Dulkin, J. Suchaniczb, A. Kania, M. Roth, Mater. Res. 21(3), e20170953 (2018)

    Google Scholar 

  15. D.S. Keeble, E.R. Barney, D.A. Keen, M.G. Tucker, J. Kreisel, P.A. Thomas, Bifurcated Adv. Funct. Mater. 23, 185–190 (2012)

    Article  Google Scholar 

  16. A. Mahajan, H. Zhang, J. Wu, E.V. Ramana, M.J. Reece, H. Yan, J. Phys. Chem. C 121, 5709–5718 (2017)

    Article  Google Scholar 

  17. G. Smolenskii, V. Isupov, A. Agranovskaya, N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1996)

    Google Scholar 

  18. Y. Hiruma, H. Nagata, T. Takenaka, J. Appl. Phys. 105, 084112 (2009)

    Article  Google Scholar 

  19. G.O. Jones, P.A. Thomas, Acta Crystallogr. Sect. B 58, 168–178 (2002)

    Article  Google Scholar 

  20. E. Aksel, J.S. Forrester, B. Kowalski, J.L. Jones, P.A. Thomas, Appl. Phys. Lett. 99, 222901 (2011)

    Article  Google Scholar 

  21. J.A. Zvirgzds, P.P. Kapostin, J.V. Zvirgzde, T.V. Kruzina, Ferroelectrics 40, 75–77 (1982)

    Article  Google Scholar 

  22. J. Suchanicz, J.K. Wapulinski, Ferroelectrics 165, 249–253 (1995)

    Article  Google Scholar 

  23. I.P. Pronin, P.P. Syrnikov, V.A. Isupov, V.M. Egorov, N.V. Zaitseva, Ferroelectrics 25, 395–397 (1980)

    Article  Google Scholar 

  24. K. Sakata, Y. Masuda, Ferroelectrics 7, 347–349 (1974)

    Article  Google Scholar 

  25. M.S. Zhang, J. Scott, J. Zvirgzds, Ferroelectr. Lett. Sect. 6, 147–152 (1986)

    Article  Google Scholar 

  26. V. Dorcet, G. Trolliard, P. Boullay, J. Magn. Magn. Mater. 321, 1758–1761 (2009)

    Article  Google Scholar 

  27. V. Dorcet, G. Trolliard, P. Boullay, Chem. Mater. 20, 5061–5073 (2008)

    Article  Google Scholar 

  28. G. Trolliard, V. Dorcet, Chem. Mater. 20, 5074–5082 (2008)

    Article  Google Scholar 

  29. C.K. In, G. Rujijanagul, F.Y. Zhu, S.J. Milne, Appl. Phy. Lett. 100, 202904 (2012)

    Article  Google Scholar 

  30. V. Polinger, I.B. Bersuker, Phys. Rev. B 98, 214102 (2018)

    Article  Google Scholar 

  31. L.K. Pradhan, R. Pandey, S. Kumar, S. Supriya, M. Kar, J. Phys. D 51, 375301 (2018)

    Article  Google Scholar 

  32. J.D.S. Guerra, A.P. Barranco, F.C. Pinar, Y.M. Gonzalez, Phys. B 525, 114–118 (2017)

    Article  Google Scholar 

  33. G.W. Stinton, J.S.O. Evans, J. Appl. Cryst. 40, 87–95 (2007)

    Article  Google Scholar 

  34. K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, Jpn. J. Appl. Phys. 45(5B), 4493–4496 (2006)

    Article  Google Scholar 

  35. B. Guttler, B. Mihailovab, R. Stoscha, U. Bismayerc, M. Gospodinov, J. Mol. Struct. 661–662, 469–479 (2003)

    Article  Google Scholar 

  36. A.P.B. Selvadurai, V. Pazhnivelu, B.K. Vasanth, C. Jagadeeshwaran, R. Murugaraj, J. Mater. Sci.: Mater. Electron. 26, 7655–7665 (2015)

    Google Scholar 

  37. D.A.F. Benavide, A.I.G. Perez, A.M.B. Castro, M.T.A. Ayala, B.M. Murguia, J.M. Saldana, Materials 11, 36 (2018)

    Google Scholar 

  38. D.E.J. Ruth, B. Sundarakannan, Ceram. Int. 42, 4775–4778 (2016)

    Article  Google Scholar 

  39. A.P. Barranco, O.G. Zaldívar, F.C. Pinar, R.L. Noda, J.F. Betancourt, Phys. Status Solidi B 242(9), 1864–1867 (2005)

    Article  Google Scholar 

  40. X. Yao, Z.L. Chen, L.E. Cross, J. Appl. Phys. 54, 3394 (1983)

    Article  Google Scholar 

  41. E. Cross, Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  42. D. Viehland, S.J. Jang, L.E. Cross, M. Wuttig, J. Appl. Phys. 68, 2916 (1990)

    Article  Google Scholar 

  43. T.F. Zhang, X.G. Tang, Q.X. Liu, S.G. Lu, Y.P. Jiang, X.X. Huang, Q.F. Zhou, AIP Adv. 4, 107141 (2014)

    Article  Google Scholar 

  44. K. Sakata, Y. Masuda, Ferroelectrics 7, 347 (1974)

    Article  Google Scholar 

  45. J. Suchanicz, W.S. Ptak, Ferroelectrics Lett. 12, 71 (1990)

    Article  Google Scholar 

  46. A. Ullah, A. Ullah, W. Kim, D.S. Lee, S.J. Jeong, C.W. Ahn, J. Am. Ceram. Soc. 97(8), 2471–2478 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoranjan Kar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pradhan, L.K., Pandey, R., Kumar, S. et al. Evidence of compositional fluctuation induced relaxor antiferroelectric to antiferroelectric ordering in Bi0.5Na0.5TiO3–Bi0.5K0.5TiO3 based lead free ferroelectric. J Mater Sci: Mater Electron 30, 9547–9557 (2019). https://doi.org/10.1007/s10854-019-01288-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01288-y

Navigation