Skip to main content

Advertisement

Log in

CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, CuCo2S4 directly grown on carbon fiber papers (CFP) were prepared by a low-cost hydrothermal method. We also studied the influence of two different sulfur sources on the morphology and performance of CuCo2S4. Compared to TAA as sulfur source, the performance and morphology of CuCo2S4 by Na2S·9H2O are better. The CuCo2S4–Na2S nanotubes possess irregular diameters from 100 to 200 nm. An electrode made of the synthesized CuCo2S4–Na2S nanotubes/CFP composite exhibits a maximum specific capacitance of 456 F g−1 at 1 A g−1 and 83% of capacitance retention after 5000 cycles at 5 A g−1. The synthesized CuCo2S4–Na2S/CFP is used to construct an all-solid-state asymmetric supercapacitor (ASC) as the positive electrode, while and the negative electrode is made of a Fe2O3/reduced graphene oxide (rGO) composite on Ni foam. This asymmetric device has delivered an energy density of 50 W h kg−1 and a power density of 700 W kg−1 at an operating voltage of 1.5 V. It retains a long cycling life—78.2% capacity retention ratio after 5000 cycles. This work demonstrates the feasibility of the CuCo2S4–Na2S nanotubes in the applications of high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D.U. Lee, J. Fu, M.G. Park, H. Liu, A.G. Kashkooli, Z.W. Chen, Self-assembled NiO/Ni(OH)(2) nanoflakes as active material for high-power and high-energy hybrid rechargeable battery. Nano Lett. 16(3), 1794–1802 (2016)

    CAS  Google Scholar 

  2. Y. Chang, Y.W. Sui, J.Q. Qi, L.Y. Jiang, Y.Z. He, F.X. Wei, Q.K. Meng, Y.X. Jin, Facile synthesis of Ni3S2 and Co9S8 double-size nanoparticles decorated on rGO for high-performance supercapacitor electrode materials. Electrochim. Acta 226, 69–78 (2017)

    CAS  Google Scholar 

  3. B. Anothumakkool, R. Soni, S.N. Bhange, S. Kurungot, Novel scalable synthesis of highly conducting and robust PEDOT paper for a high performance flexible solid supercapacitor. Energy Environ. Sci. 8(4), 1339–1134 (2015)

    CAS  Google Scholar 

  4. J.X. Zhao, C.W. Li, Q.C. Zhang, J. Zhang, X.N. Wang, Z.Y. Lin, J.J. Wang, W.B. Lv, C.H. Lu, C.P. Wong, Y.G. Yao, An all-solid-state, lightweight, and flexible asymmetric supercapacitor based on cabbage-like ZnCo2O4 and porous VN nanowires electrode materials. J. Mater. Chem. A. 5(15), 6928–6936 (2017)

    CAS  Google Scholar 

  5. Y.R. Jiang, X. Zheng, X.Q. Yan, Y. Li, X. Zhao, Y. Zhang, 3D architecture of a graphene/CoMoO4 composite for asymmetric supercapacitors usable at various temperatures. J. Colloid Interface Sci. 493, 42–50 (2017)

    CAS  Google Scholar 

  6. A.V. Shinde, N.R. Chodankar, V.C. Lokhande, A.C. Lokhande, T. Ji, J.H. Kim, C.D. Lokhande, Highly energetic flexible all-solid-state asymmetric supercapacitor with Fe2O3 and CuO thin films. RSC Adv. 6(63), 58839–58843 (2016)

    CAS  Google Scholar 

  7. P. Staiti, M. Minutoli, F. Lufrano, All solid electric double layer capacitors based on Nafion ionomer. Electrochim. Acta 47(17), 2795–2800 (2002)

    CAS  Google Scholar 

  8. J.F. Shen, J. Ji, P. Dong, R. Baines, Z.Q. Zhang, P.M. Ajayan, M.X. Ye, Novel FeNi2S4/TMD-based ternary composites for supercapacitor applications. J Mater Chem A. 4(22), 8844–8850 (2016)

    CAS  Google Scholar 

  9. X.W. Sun, C.P. Li, G.F. Huang, J. Bai, Preparation of amorphous cobalt/carbon nanofibers composite as binder-free and conductive-free electrode materials for high supercapacitor. J. Mater. Sci. Mater Electron. 28(17), 12448–12457 (2017)

    CAS  Google Scholar 

  10. N. Duraisamy, A. Numan, S.O. Fatin, K. Ramesh, S. Ramesh, Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J. Colloid Interface Sci. 471, 136–144 (2016)

    CAS  Google Scholar 

  11. U.J. Chavan, A.A. Yadav, Electrochemical behavior of spray deposited mixed nickel manganese oxide thin films for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28(6), 4958–4964 (2017)

    CAS  Google Scholar 

  12. X.W. Wang, X.E. Wang, Y.P. Liu, Y.Y. Kong, L.Y. Sun, Y.C. Hu, Q.Q. Zhu, Hydrothermal process fabrication of NiO–NiCoO2–Co3O4 composites used as supercapacitor materials. J. Mater. Sci. Mater. Electron. 28(20), 14928–14934 (2017)

    CAS  Google Scholar 

  13. K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 7(11), 6648–6659 (2017)

    CAS  Google Scholar 

  14. Y.D. Zhang, B.P. Lin, J.C. Wang, J.H. Tian, Y. Sun, X.Q. Zhang, H. Yang, All-solid-state asymmetric supercapacitors based on ZnO quantum dots/carbon/CNT and porous N-doped carbon/CNT electrodes derived from a single ZIF-8/CNT template. J. Mater. Chem. A 4(26), 10282–10293 (2016)

    CAS  Google Scholar 

  15. G.X. Qu, J.L. Cheng, X.D. Li, D.M. Yuan, P.N. Chen, X.L. Chen, B. Wang, H.S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv. Mater. 28(19), 3646–3652 (2016)

    CAS  Google Scholar 

  16. R.B. Pujari, A.C. Lokhande, A.R. Shelke, J.H. Kim, C.D. Lokhande, Chemically deposited nano grain composed MoS2 thin films for supercapacitor application. J. Colloid Interface Sci. 496, 1–7 (2017)

    CAS  Google Scholar 

  17. X. Ma, L. Zhang, G.C. Xu, C.Y. Zhang, H.J. Song, Y.T. He, C. Zhang, D.Z. Jia, Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors. Chem. Eng. J. 320, 22–28 (2017)

    CAS  Google Scholar 

  18. Q. Xu, D.L. Jiang, T.Y. Wang, S.C. Meng, M. Chen, Ag nanoparticle-decorated CoS nanosheet nanocomposites: a high-performance material for multifunctional applications in photocatalysis and supercapacitors. RSC Adv. 6(60), 55039–55045 (2016)

    CAS  Google Scholar 

  19. Z. Tian, H.L. Dou, B. Zhang, W.H. Fan, X.M. Wang, Three-dimensional graphene combined with hierarchical CuS for the design of flexible solid-state supercapacitors. Electrochim. Acta 237, 109–118 (2017)

    CAS  Google Scholar 

  20. Y.W. Sui, Y.M. Zhang, P.H. Hou, J.Q. Qi, F.X. Wei, Y.Z. He, Q.K. Meng, Z. Sun, Three-dimensional NiCo2S4 nanosheets as high-performance electrodes materials for supercapacitors. J. Mater. Sci. 52(12), 7100–7109 (2017)

    CAS  Google Scholar 

  21. Y. Zhang, J. Xu, Y.Y. Zheng, Y.J. Zhang, X. Hu, T.T. Xu, NiCo2S4@NiMoO4 core–shell heterostructure nanotube arrays grown on ni foam as a binder-free electrode displayed high electrochemical performance with high capacity. Nanoscale Res. Lett. 12, 412–421 (2017)

    Google Scholar 

  22. J.H. Tang, Y.C. Ge, J.F. Shen, M.X. Ye, Facile synthesis of CuCo2S4 as a novel electrode material for ultrahigh supercapacitor performance. Chem. Commun. 52(7), 1509–1512 (2016)

    CAS  Google Scholar 

  23. Y. Zhang, J. Xu, Y.J. Zhang, Y.Y. Zheng, X. Hu, Z.X. Liu, Facile fabrication of flower-like CuCo2S4 on Ni foam for supercapacitor application. J. Mater. Sci. 52(16), 9531–9538 (2017)

    CAS  Google Scholar 

  24. W.M. Du, Z.Q. Zhu, Y.B. Wang, J.N. Liu, W.J. Yang, X.F. Qian, H. Pang, One-step synthesis of CoNi2S4 nanoparticles for supercapacitor electrodes. RSC Adv. 4(14), 6998–7002 (2014)

    CAS  Google Scholar 

  25. R. Li, S.L. Wang, J.P. Wang, Z.C. Huang, Ni3S2@CoS core–shell nano-triangular pyramid arrays on Ni foam for high-performance supercapacitors. Phys. Chem. Chem. Phys. 17(25), 16434–16442 (2015)

    CAS  Google Scholar 

  26. J. Zhu, S.C. Tang, J. Wu, X.L. Shi, B.G. Zhu, X.K. Meng, Wearable high-performance supercapacitors based on silver-sputtered textiles with FeCo2S4–NiCo2S4 composite nanotube-built multitripod architectures as advanced flexible electrodes. Adv. Energy Mater. 7(2), 1614–6832 (2017)

    Google Scholar 

  27. J.W. Xiao, L. Wan, S.H. Yang, F. Xiao, S. Wang, Design hierarchical electrodes with highly conductive NiCo2S4 nanotube arrays grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 14(2), 831–838 (2014)

    CAS  Google Scholar 

  28. J. Zhang, X.B. Yi, X.C. Wang, J. Ma, S. Liu, X.J. Wang, Nickel oxide grown on carbon nanotubes/carbon fiber paper by electrodeposition as flexible electrode for high-performance supercapacitors. J. Mater. Sci. Mater. Electron. 26(10), 7901–7908 (2015)

    CAS  Google Scholar 

  29. Y. Wang, Z.Q. Shi, Y. Huang, Y.F. Ma, C.Y. Wang, M.M. Chen, Y.S. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113(30), 13103–13107 (2009)

    CAS  Google Scholar 

  30. L.B. Kong, M. Liu, J.W. Lang, Y.C. Luo, L. Kang, Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc. 156(12), A1000–A1004 (2009)

    CAS  Google Scholar 

  31. Z.L. Ma, X.B. Huang, S. Dou, J.H. Wu, S.Y. Wang, One-pot synthesis of Fe2O3 nanoparticles on nitrogen-doped graphene as advanced supercapacitor electrode materials. J. Phys. Chem. C 118(31), 17231–17239 (2014)

    CAS  Google Scholar 

  32. Y.D. Wang, C. Shen, L.Y. Niu, R.Z. Li, H.T. Guo, Y.X. Shi, C. Li, X.J. Liu, Y.Y. Gong, Hydrothermal synthesis of CuCo2O4/CuO nanowire arrays and RGO/Fe2O3 composites for high-performance aqueous asymmetric supercapacitors. J. Mater. Chem. A 4(25), 9977–9985 (2016)

    CAS  Google Scholar 

  33. R. Wang, Y.W. Sui, S.F. Huang, Y.G. Pu, P. Cao, High-performance flexible all-solid-state asymmetric supercapacitors from nanostructured electrodes prepared by oxidation-assisted dealloying protocol. Chem. Eng. 331, 527–535 (2018)

    CAS  Google Scholar 

  34. F. Li, H. Chen, X.Y. Liu, S.J. Zhu, J.Q. Jia, C.H. Xu, F. Dong, Z.Q. Wen, Y.X. Zhang, Low-cost high-performance asymmetric supercapacitors based on Co2AlO4@MnO2 nanosheets and Fe3O4 nanoflakes. J. Mater. Chem. A 4(6), 2096–2104 (2016)

    CAS  Google Scholar 

  35. Y.C. Ge, J.J. Wu, X.W. Xu, M.X. Ye, J.F. Shen, Facile synthesis of CoNi2S4 and CuCo2S4 with different morphologies as prominent catalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 41(44), 19847–19854 (2016)

    CAS  Google Scholar 

  36. X.J. Huang, G.Y. Deng, L.J. Liao, W.L. Zhang, G.Q. Guan, F. Zhou, Z.Y. Xiao, R.J. Zou, Q. Wang, J.Q. Hu, CuCo2S4 nanocrystals: a new platform for multi-modal imaging guided photothermal therapy. Nanoscale 9(7), 2626–2632 (2017)

    CAS  Google Scholar 

  37. A.N. Buckley, W.M. Skinner, S.L. Harmer, A. Pring, L.J. Fan, Electronic environments in carrollite, CuCo2S4, determined by soft X-ray photoelectron and absorption spectroscopy. Geochim. Cosmochim. Acta 73(15), 4452–4467 (2009)

    CAS  Google Scholar 

  38. M. Huang, Y.X. Zhang, F. Li, L.L. Zhang, Z.Y. Wen, Q. Liu, Facile synthesis of hierarchical Co3O4@MnO2 core–shell arrays on Ni foam for asymmetric supercapacitors. J. Power Sources 252, 98–106 (2014)

    CAS  Google Scholar 

  39. S.Y. Cheng, T.L. Shi, Y.Y. Huang, X.X. Tao, J.J. Li, C.L. Cheng, G.L. Liao, Z.R. Tang, Rational design of nickel cobalt sulfide/oxide core–shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors. Ceram. Int. 43(2), 2155–2164 (2017)

    CAS  Google Scholar 

  40. Y. Wang, L.D. Wang, B. Wei, Q.H. Miao, Y.N. Yuan, Z.Y. Yang, W.D. Fei, Electrodeposited nickel cobalt sulfide nanosheet arrays on 3D-graphene/Ni foam for high-performance supercapacitors. RSC Adv. 5(121), 100106–100113 (2015)

    CAS  Google Scholar 

  41. S.S. Gu, Z. Lou, X.D. Ma, G.Z. Shen, CuCo2O4 nanowires grown on a Ni wire for high-performance, flexible fiber supercapacitors. ChemElectroChem 2(7), 1042–1047 (2015)

    CAS  Google Scholar 

  42. Y.S. Gai, Y.Y. Shang, L.Y. Gong, L.H. Su, L. Hao, F.Y. Dong, J.Z. Li, A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors. RSC Adv. 7(2), 1038–1044 (2017)

    CAS  Google Scholar 

  43. Y.R. Zhu, Z.B. Wu, M.J. Jing, H.S. Hou, Y.C. Yang, Y. Zhang, X.M. Yang, W.X. Song, X.N. Jia, X.B. Ji, Porous NiCo2O4 spheres tuned through carbon quantum dots utilised as advanced materials for an asymmetric supercapacitor. J. Mater. Chem. A 3(2), 866–877 (2015)

    CAS  Google Scholar 

  44. H. Chai, H. Dong, Y.C. Wang, J.Y. Xu, D.Z. Jia, Porous NiCo2S4-halloysite hybrid self-assembled from nanosheets for high-performance asymmetric supercapacitor applications. Appl. Surf. Sci. 401, 399–407 (2017)

    CAS  Google Scholar 

  45. X. Zheng, X.Q. Yan, Y.H. Sun, Y. Li, M.H. Li, G.J. Zhang, Y. Zhang, Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)(2) interface. J. Mater. Chem. A. 4(46), 17981–17987 (2016)

    CAS  Google Scholar 

  46. A.M. Elshahawy, X. Li, H. Zhang, Y.T. Hu, K.H. Ho, C. Guan, J. Wang, Controllable MnCo2S4 nanostructures for high performance hybrid supercapacitors. J. Mater. Chem. A 5(16), 7494–7506 (2017)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Natural Science Foundation of China (Nos. 51671214 and 51601220), Supported by the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201744).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanwei Sui, Saifang Huang or Peng Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, X., Tang, B., Sui, Y. et al. CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. J Mater Sci: Mater Electron 29, 8636–8648 (2018). https://doi.org/10.1007/s10854-018-8878-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8878-6

Navigation